- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Compute Multiply Nonlinear Eigenvalues
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-10-1,
author = {Li , Ren-Cang},
title = {Compute Multiply Nonlinear Eigenvalues},
journal = {Journal of Computational Mathematics},
year = {1992},
volume = {10},
number = {1},
pages = {1--20},
abstract = {
An incomplete QR decomposition called QR-like decomposition is proposed and studied. The developed theory enables us to construct two new algorithms for computing multiply nonlinear eigenvalues.
Several numerical tests are presented to illustrate their behavior in comparison with Kublanovskaya's approach.
TY - JOUR
T1 - Compute Multiply Nonlinear Eigenvalues
AU - Li , Ren-Cang
JO - Journal of Computational Mathematics
VL - 1
SP - 1
EP - 20
PY - 1992
DA - 1992/10
SN - 10
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9337.html
KW -
AB -
An incomplete QR decomposition called QR-like decomposition is proposed and studied. The developed theory enables us to construct two new algorithms for computing multiply nonlinear eigenvalues.
Several numerical tests are presented to illustrate their behavior in comparison with Kublanovskaya's approach.
Li , Ren-Cang. (1992). Compute Multiply Nonlinear Eigenvalues.
Journal of Computational Mathematics. 10 (1).
1-20.
doi:
Copy to clipboard