- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Approximate Methods for Generalized Inverses of Operators in Banach Spaces
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-11-323,
author = {Kuang , Jiao-Xun},
title = {Approximate Methods for Generalized Inverses of Operators in Banach Spaces},
journal = {Journal of Computational Mathematics},
year = {1993},
volume = {11},
number = {4},
pages = {323--328},
abstract = {
In this paper, we present the necessary and sufficient condition of convergence of several iterative methods for computing the generalized inverses of operators in Banach spaces. It is proved that the iterative methods converge to the generalized inverse of an Operator in Banach spaces if and only if these conditions are satisfied.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9331.html} }
TY - JOUR
T1 - Approximate Methods for Generalized Inverses of Operators in Banach Spaces
AU - Kuang , Jiao-Xun
JO - Journal of Computational Mathematics
VL - 4
SP - 323
EP - 328
PY - 1993
DA - 1993/11
SN - 11
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9331.html
KW -
AB -
In this paper, we present the necessary and sufficient condition of convergence of several iterative methods for computing the generalized inverses of operators in Banach spaces. It is proved that the iterative methods converge to the generalized inverse of an Operator in Banach spaces if and only if these conditions are satisfied.
Kuang , Jiao-Xun. (1993). Approximate Methods for Generalized Inverses of Operators in Banach Spaces.
Journal of Computational Mathematics. 11 (4).
323-328.
doi:
Copy to clipboard