- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Inverse Spectrum Problems for Block Jacobi Matrix
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-11-313,
author = {Zhu , Ben-RenJackson , K. R. and Chan , R. P. K.},
title = {Inverse Spectrum Problems for Block Jacobi Matrix},
journal = {Journal of Computational Mathematics},
year = {1993},
volume = {11},
number = {4},
pages = {313--322},
abstract = {
By establishing the spectrum (matrix) function for the block Jacobi matrix, theorems of existence and uniqueness for the inverse problem and algorithms for its solution are obtained. The study takes into account all possible multiple-eigenvalue cases that are very difficult to deal with by other means.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9330.html} }
TY - JOUR
T1 - Inverse Spectrum Problems for Block Jacobi Matrix
AU - Zhu , Ben-Ren
AU - Jackson , K. R.
AU - Chan , R. P. K.
JO - Journal of Computational Mathematics
VL - 4
SP - 313
EP - 322
PY - 1993
DA - 1993/11
SN - 11
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9330.html
KW -
AB -
By establishing the spectrum (matrix) function for the block Jacobi matrix, theorems of existence and uniqueness for the inverse problem and algorithms for its solution are obtained. The study takes into account all possible multiple-eigenvalue cases that are very difficult to deal with by other means.
Zhu , Ben-RenJackson , K. R. and Chan , R. P. K.. (1993). Inverse Spectrum Problems for Block Jacobi Matrix.
Journal of Computational Mathematics. 11 (4).
313-322.
doi:
Copy to clipboard