- Journal Home
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Multistep Mehods for a Class of Higher Order Differential Problems: Convergence and Error Bounds
- BibTex
- RIS
- TXT
@Article{JCM-12-273,
author = {},
title = {Multistep Mehods for a Class of Higher Order Differential Problems: Convergence and Error Bounds},
journal = {Journal of Computational Mathematics},
year = {1994},
volume = {12},
number = {3},
pages = {273--290},
abstract = {In this paper multistep methods for higher order differential systems of the type are proposed. Such methods permit the numerical solutions of initial value problems for such systems, providing error bounds and avoiding the increase of the computational cost derived from the standard approach based on the consideration of an equivalent extended first order system.},
issn = {1991-7139},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jcm/9299.html}
}
TY - JOUR
T1 - Multistep Mehods for a Class of Higher Order Differential Problems: Convergence and Error Bounds
JO - Journal of Computational Mathematics
VL - 3
SP - 273
EP - 290
PY - 1994
DA - 1994/12
SN - 12
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9299.html
KW -
AB - In this paper multistep methods for higher order differential systems of the type are proposed. Such methods permit the numerical solutions of initial value problems for such systems, providing error bounds and avoiding the increase of the computational cost derived from the standard approach based on the consideration of an equivalent extended first order system.
Jodar Lucas, Morera Jose Luis & Rubio Gregoria. (1970). Multistep Mehods for a Class of Higher Order Differential Problems: Convergence and Error Bounds.
Journal of Computational Mathematics. 12 (3).
273-290.
doi:
Copy to clipboard