- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Models of Asynchronous Parallel Nonlinear Multisplitting Relaxed Iterations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-13-369,
author = {Z. Z. Bai, D. R. Wang and D. J. Evans},
title = {Models of Asynchronous Parallel Nonlinear Multisplitting Relaxed Iterations},
journal = {Journal of Computational Mathematics},
year = {1995},
volume = {13},
number = {4},
pages = {369--386},
abstract = {
In the sense of the nonlinear multisplitting and based on the principle of sufficiently using the delayed information, we propose models of asynchronous parallel accelerated overrelaxation iteration methods for solving large scale system of nonlinear equations. Under proper conditions, we set up the local convergence theories of these new method models.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9279.html} }
TY - JOUR
T1 - Models of Asynchronous Parallel Nonlinear Multisplitting Relaxed Iterations
AU - Z. Z. Bai, D. R. Wang & D. J. Evans
JO - Journal of Computational Mathematics
VL - 4
SP - 369
EP - 386
PY - 1995
DA - 1995/08
SN - 13
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9279.html
KW -
AB -
In the sense of the nonlinear multisplitting and based on the principle of sufficiently using the delayed information, we propose models of asynchronous parallel accelerated overrelaxation iteration methods for solving large scale system of nonlinear equations. Under proper conditions, we set up the local convergence theories of these new method models.
Z. Z. Bai, D. R. Wang and D. J. Evans. (1995). Models of Asynchronous Parallel Nonlinear Multisplitting Relaxed Iterations.
Journal of Computational Mathematics. 13 (4).
369-386.
doi:
Copy to clipboard