- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
The Direct Kinematic Solution of the Planar Stewart Platform with Coplanar Ground Points
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-14-263,
author = {W. D. Wu and Y. Z. Huang},
title = {The Direct Kinematic Solution of the Planar Stewart Platform with Coplanar Ground Points},
journal = {Journal of Computational Mathematics},
year = {1996},
volume = {14},
number = {3},
pages = {263--272},
abstract = {
A procedure of computing the position of the planar Stewart platform with coplanar ground points is presented avoiding the computation of Groebner basis by standard algorithm. The polynomial system resulted is triangularized. The number of arithmetic operations needed can be precisely counted.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9237.html} }
TY - JOUR
T1 - The Direct Kinematic Solution of the Planar Stewart Platform with Coplanar Ground Points
AU - W. D. Wu & Y. Z. Huang
JO - Journal of Computational Mathematics
VL - 3
SP - 263
EP - 272
PY - 1996
DA - 1996/06
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9237.html
KW -
AB -
A procedure of computing the position of the planar Stewart platform with coplanar ground points is presented avoiding the computation of Groebner basis by standard algorithm. The polynomial system resulted is triangularized. The number of arithmetic operations needed can be precisely counted.
W. D. Wu and Y. Z. Huang. (1996). The Direct Kinematic Solution of the Planar Stewart Platform with Coplanar Ground Points.
Journal of Computational Mathematics. 14 (3).
263-272.
doi:
Copy to clipboard