- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, an exterior Signorini problem is reduced to a variational inequality on a bounded inner region with the help of a coupling of boundary integral and finite element methods. We established an equivalence between the original exterior Signorini problem and the variational inequality on the bounded inner region coupled with two integral equations on an auxiliary boundary. We also introduce a finite element approximation of the variational inequality and a boundary element approximation of the integral equations. Furthermore, the optimal error estimates are given.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9183.html} }In this paper, an exterior Signorini problem is reduced to a variational inequality on a bounded inner region with the help of a coupling of boundary integral and finite element methods. We established an equivalence between the original exterior Signorini problem and the variational inequality on the bounded inner region coupled with two integral equations on an auxiliary boundary. We also introduce a finite element approximation of the variational inequality and a boundary element approximation of the integral equations. Furthermore, the optimal error estimates are given.