- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
When parametric functions are used to blend 3D surfaces, geometric continuity of displacements and derivatives until to the surface boundary must be satisfied. By the traditional blending techniques, however, arbitrariness of the solutions arises to cause a difficulty in choosing a suitable blending surface. Hence to explore new blending techniques is necessary to construct good surfaces so as to satisfy engineering requirements. In this paper, a blending surface is described as a flexibly elastic plate both in partial differential equations and in their variational equations, thus to lead to a unique solution in a sense of the minimal global surface curvature. Boundary penalty finite element methods (BP-FEMs) with and without approximate integration are proposed to handle the complicated constraints along the blending boundary. Not only have the optimal convergence rate $O (h^2)$ of second order generalized derivatives of the solutions in the solution domain been obtained, but also the high convergence rate $O (h^4)$ of the tangent boundary condition of the solutions can be achieved, where $h$ is the maximal boundary length of rectangular elements used. Moreover, useful guidance in computation is discovered to deal with interpolation and approximation in the boundary penalty integrals. A numerical example is also provided to verify perfectly the main theoretical analysis made. This paper yields a framework of mathematical modelling, numerical techniques and error analysis to the general and complicated blending problems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9175.html} }When parametric functions are used to blend 3D surfaces, geometric continuity of displacements and derivatives until to the surface boundary must be satisfied. By the traditional blending techniques, however, arbitrariness of the solutions arises to cause a difficulty in choosing a suitable blending surface. Hence to explore new blending techniques is necessary to construct good surfaces so as to satisfy engineering requirements. In this paper, a blending surface is described as a flexibly elastic plate both in partial differential equations and in their variational equations, thus to lead to a unique solution in a sense of the minimal global surface curvature. Boundary penalty finite element methods (BP-FEMs) with and without approximate integration are proposed to handle the complicated constraints along the blending boundary. Not only have the optimal convergence rate $O (h^2)$ of second order generalized derivatives of the solutions in the solution domain been obtained, but also the high convergence rate $O (h^4)$ of the tangent boundary condition of the solutions can be achieved, where $h$ is the maximal boundary length of rectangular elements used. Moreover, useful guidance in computation is discovered to deal with interpolation and approximation in the boundary penalty integrals. A numerical example is also provided to verify perfectly the main theoretical analysis made. This paper yields a framework of mathematical modelling, numerical techniques and error analysis to the general and complicated blending problems.