- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial space are used as the shape function space and the test function space, respectively. We prove that the approximation order of the standard quadratic finite element can be attained in this Petrov-Galerkin model. Based on the so-called "contractivity" of the interpolation operator, we further prove that the defect iterative sequence of the linear finite element solution converge to the proposed Petrov-Galerkin approximate solution.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9149.html} }In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial space are used as the shape function space and the test function space, respectively. We prove that the approximation order of the standard quadratic finite element can be attained in this Petrov-Galerkin model. Based on the so-called "contractivity" of the interpolation operator, we further prove that the defect iterative sequence of the linear finite element solution converge to the proposed Petrov-Galerkin approximate solution.