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Abstract

In this paper we introduce a Petrov-Galerkin approximation model to the solu-

tion of linear and semi-linear elliptic boundary value problems in which piecewise

quadratic polynomial space and piecewise linear polynomial space are used as the

shape function space and the test function space, respectively. We prove that the

approximation order of the standard quadratic finite element can be attained in this

Petrov-Galerkin model. Based on the so-called “contractivity” of the interpolation

operator, we further prove that the defect iterative sequence of the linear finite

element solution converge to the proposed Petrov-Galerkin approximate solution.

Key words: Petrov-Galerkin approximation, defect iteration correction, interpola-

tion operator

1. Introduction

Frank etc. cf. [1] established the iterated defect correction scheme for finite ele-

ment of elliptic boundary problems. For linear elliptic boundary value problem [2–5]

have discussed the efficiency of the scheme by using superconvergence and asymptotic

expansion under the conditions that the partition is uniform or strongly regular. It is

proven that for the given linear finite element solution as initial approximation the first

iterated correction can achieve the approximation order that the standard quadratic

finite element solution has. However, for example, when the partition is only piecewise

uniform, the approximation order of the quadratic finite element can not be obtained

by the first iterated correction under the natural smoothness assumption. Moreover
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numerical results present that the approximation order is lower around the crossnode

of bigger element; cf. [2, 3], although the exact solution is sufficiently smooth. On the

other hand, the results in [2, 3] point out that the iterated corrections after many times

can make up for a loss of approximation defect. That is, the iterated defect correction

scheme is efficient. How can one give a theorectical explanation?

For the linear two-point boundary problem, it has been shown [7] that the iterated

defect correction of finite element solution converges to the Petrov-Galerkin approxima-

tion solution. Can one further study the convergence of the iterated defect correction

scheme for the finite element of the elliptic boundary problem by the aid of ideas given in

[7]? To answer the question, we should establish a suitable Petrov-Galerkin scheme for

the elliptic boundary problem. Although the theoretical analysis for Petrov-Galerkin

approxiamtion of the elliptic boundary problem has been established in [8], to construct

a practicable Petrov-Galerkin scheme and prove its convergence and error estimation

is important work. This paper will be dedicated to this problem.

The remainder of the paper is organized as follows. We establish the so-called con-

tractivity (cf. Theorem 2.1) of the interpolation operator in the next section. Then, in

Section 3 we consider the linear elliptic boundary problem and establish a scheme of

Petrov-Galerkin approximation. Furthermore we prove that the iterated defect correc-

tion for the linear finite element solution geometrically converges to the solution of the

proposed Petrov-Galerkin scheme. Finally, in Section 4 we report the similar results as

in Section 3 for the semi-linear elliptic boundary problem.

2. Approximation property of interpolation operator

Given a triangle T with vertices at Pi = (xi, yi), i = 1, 2, 3, denote by ∆ the area

of T and set

ξ1 = x2 − x3, ξ2 = x3 − x1, ξ3 = x1 − x2

η1 = y2 − y3, η2 = y3 − y1, η3 = y1 − y2 (2.1)

r1(T ) =
1

∆
(ξ2ξ3 + η2η3), r2(T ) =

1

∆
(ξ3ξ1 + η3η1), r3(T ) =

1

∆
(ξ2ξ3 + η2η3),

t1(T ) =
1

∆
(ξ2

1 + η2
1), t2(T ) =

1

∆
(ξ2

2 + η2
2), t3(T ) =

1

∆
(ξ2

3 + η2
3) (2.2)

l1(T )2 = ξ2
1 + η2

1 , l2(T )2 = ξ2
2 + η2

2 , l3(T )2 = ξ2
3 + η2

3 , (2.3)

where li is the length of the edge Pi−1Pi+1 opposite to the vertex Pi (with i = 1, 2, 3

and i−1, i, i+1 ∈ Z3 similarly defined in the following) and it is obvious that ri(T ) ≤ 0

and

t1(T ) = −r2(T ) − r3(T ), t2(T ) = −r3(T ) − r1(T ), t3(T ) = −r1(T ) − r2(T ) (2.4)
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Now let λi be the area coordinates related to the vertices Pi, i.e.,





x = x1λ1 + x2λ2 + x3λ3

y = y1λ1 + y2λ2 + y3λ3

1 = λ1 + λ2 + λ3

(2.5)

such that the triangle T is transformed into the standard simplex T̂ = {(λ1, λ2, λ3) | λ1+

λ2 + λ3 = 1, λi ≥ 0}, where (λ1, λ2, λ3) are called the barycentric coordinates of (x, y)

with respect to the triangle T . By the transformation (2.5) any function u(x, y) defined

on T can be associated with a function û(λ1, λ2, λ3) defined on T̂ such that

u(x, y) ≡ û(λ1, λ2, λ3) (2.6)

On the other hand it is not difficult to prove that, with (2.5),

∂λ1

∂x
=

η1

2∆
,

∂λ2

∂x
=

η2

2∆
,

∂λ3

∂x
=

η3

2∆
,

∂λ1

∂y
= − ξ1

2∆
,

∂λ2

∂y
= − ξ2

2∆
,

∂λ3

∂y
= − ξ3

2∆
, (2.7)

Hence we can conclude from (2.6) and (2.7) that

∂u

∂x
=

1

2∆

(
η1

∂û

∂λ1
+ η2

∂û

∂λ2
+ η3

∂û

∂λ3

)

∂u

∂y
= − 1

2∆

(
ξ1

∂û

∂λ1
+ ξ2

∂û

∂λ2
+ ξ3

∂û

∂λ3

)
(2.8)

For any triangle T with vertices at Pi = (xi, yi) (i = 1, 2, 3), four sub-triangles

T0, T1, T2 and T3 can be obtained by connecting the midpoint Pi of each edge Pi−1Pi+1

opposite to the vertex Pi, where T0 = P1P2P3, T1 = P1P3P2, T2 = P3P2P1 and T3 =

P2P1P3. We can define similarly ri(Tj) to (2.2) and it can be proved that ri(Tj) = ri(T )

and ti(Tj) = ti(T ) for i = 1, 2, 3 and j = 0, 1, 2, 3. Then we also denote by ri ≡ ri(Tj) =

ri(T ) and ti ≡ ti(Tj) = ti(T ) without any confusion.

Let I2u be the quadratic Lagrange interpolation polynomial defined on the nodes

{Pi, Pi, i = 1, 2, 3} and I1u be the piecewise linear interpolation polynomial with respect

to {Pi, Pi, i = 1, 2, 3} on the four sub-triangles T0, T1, T2 and T3.

Define

‖u‖T =

√∫

T

((∂u

∂x

)2
+

(∂u

∂y

)2)
dxdy (2.9)

Then with (2.8) we have

‖u‖T =

∫

T

((∂u

∂x

)2
+

(∂u

∂y

)2)
dxdy

=

∫

T̂

1

4∆

((
η1

∂û

∂λ1
+ η2

∂û

∂λ2
+ η3

∂û

∂λ3

)2
+

(
ξ1

∂û

∂λ1
+ ξ2

∂û

∂λ2
+ ξ3

∂û

∂λ3

)2)
d∆
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=
1

4

∫

T

( ∂û

∂λ1
,

∂û

∂λ2
,

∂û

∂λ3

)


−r2 − r3 r3 r2

r3 −r3 − r1 r1

r2 r1 −r1 − r2







∂û

∂λ1
∂û

∂λ2
∂û

∂λ3




d∆

(2.10)

Now we are in a position to state a main theorem about the contractivity of the

interpolation operator.

Theorem 2.1.

‖I2u − I1u‖T ≤
√

2

3
‖I1u‖T (2.11)

‖I2u − I1u‖T ≤
√

3

4
‖I2u‖T (2.12)

Proof. It is not difficult to show that Î2u can be represented as follows by the

barycentric coordinates with respect to the triangle T ,

Î2u =
3∑

i=1

u(Pi)λ
2
i +

3∑

i=1

(4u(Pi) − u(Pi−1) − u(Pi+1))λi−1λi+1 (2.13)

From (2.10) we can obtain the following, after some tedious computation,

‖I2u‖2
T =

1

4

∫

T̂

(∂Î2u

∂λ1
,
∂Î2u

∂λ2
,
∂Î2u

∂λ3

)


−r2 − r3 r3 r2

r3 −r3 − r1 r1

r2 r1 −r1 − r2







∂Î2u

∂λ1

∂Î2u

∂λ2

∂Î2u

∂λ3




d∆

= − 1

24

3∑

i=1

ri[3(u(Pi−1) − u(P̂i))
2 + 3(u(Pi+1) − u(P̂i))

2

+ 2(u(Pi−1) − u(P̂i))(u(Pi+1) − u(P̂i)) + 8(u(P̂i−1) − u(P̂i+1))
2]

Since ‖u‖2
T = ‖u‖2

T0
+ ‖u‖2

T1
+ ‖u‖2

T2
+ ‖u‖2

T3
, we just need to compute ‖u‖Tj

(j =

0, 1, 2, 3), respectively, where u is piecewise defined on T . We first take computing ‖u‖1

as an example. On T1, I1u can be represented as follows in the barycentric coordinate

(µ1, µ2, µ3) with respect to T1,

I1u|T1 = u(P1)µ1 + u(P̂3)µ2 + u(P̂2)µ3

And also

I2u =u(P1)µ
2
1 + u(P̂3)µ

2
2 + u(P̂2)µ

2
3 +

(1

2
u(P1) −

1

2
u(P2) + 2u(P̂3)

)
µ1µ2

+
(1

2
u(P1) −

1

2
u(P3) + 2u(P̂2)

)
µ1µ3 +

(
u(P̂1) + u(P̂2)

+ u(P̂3) −
1

2
u(P2) −

1

2
u(P3)

)
µ2µ3
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Then we have that

‖I1u‖2
T1

= −1

8
r1(u(P̂2)− u(P̂3))

2 − 1

8
r2(u(P̂2)− u(P1))

2 − 1

8
r3(u(P̂3)− u(P1))

2 (2.14)

and

‖I2u − I1u‖2
T1

= − 1

96

3∑

i=1

ri[(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))
2

+ (u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))
2]

∆
= A

Similarly, we can also obtain the following results

‖I1u‖2
T2

= −1

8
r2(u(P̂3) − u(P̂1))

2 − 1

8
r1(u(P̂1) − u(P2))

2 − 1

8
r3(u(P̂3) − u(P2))

2

(2.15)

‖I1u‖2
T3

= −1

8
r3(u(P̂1) − u(P̂2))

2 − 1

8
r2(u(P̂2) − u(P3))

2 − 1

8
r1(u(P̂1) − u(P3))

2

(2.16)

‖I1u‖2
T0

= −1

8
r1(u(P̂2) − u(P̂3))

2 − 1

8
r2(u(P̂3) − u(P̂1))

2 − 1

8
r3(u(P̂1) − u(P̂2))

2

(2.17)

and

‖I2u − I1u‖2
Tj

= A (j = 0, 1, 2, 3) (2.18)

Thus with (2.14), (2.15)–(2.18) we can write

‖I1u‖2
T = −

3∑

i=1

1

8
ri[2(u(P̂i−1) − u(P̂i+1))

2 + (u(P̂i) − u(Pi−1))
2 + (u(P̂i) − u(Pi+1))

2]

and

‖I2u − I1u‖2
T =4A = − 1

24

3∑

i=1

ri[(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))
2

+ (u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))
2]

Let

Ai =
1

24
[(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))

2

+ (u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))
2]

Bi =
1

8
[2(u(P̂i−1) − u(P̂i+1))

2 + (u(P̂i) − u(Pi−1))
2 + (u(P̂i) − u(Pi+1))

2]

Ci =
1

24
[3(u(Pi−1) − u(P̂i))

2 + 3(u(Pi+1) − u(P̂i))
2

+ 2(u(Pi−1) − u(P̂i))(u(Pi+1) − u(P̂i)) + 8(u(P̂i−1) − u(P̂i+1))
2],
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then we have the equalities ‖I2u − I1u‖2
T = −

3∑

i=1

riAi, ‖I1u‖2
T = −

3∑

i=1

riBi, ‖I2u‖2
T =

−
3∑

i=1

riCi. For i = 1, 2, 3, we can obtain the following relations by using the Cauchy

inequality

Ai =
1

24
[(u(Pi−1) − u(P̂i))

2 + (u(Pi+1) − u(P̂i))
2 + 2(u(P̂i−1) − u(P̂i+1))

2

+ 2(u(Pi−1) − u(P̂i))(u(P̂i−1) − u(P̂i+1)) + 2(u(Pi+1) − u(P̂i))(u(P̂i−1) − u(P̂i+1))]

≤ 1

12
[2(u(P̂i−1) − u(P̂i+1))

2 + (u(P̂i) − u(Pi−1))
2 + (u(P̂i) − u(Pi+1))

2] =
2

3
Bi

On the other hand, it is obvious that ri ≤ 0, hence we can derive the following

inequality

‖I2u − I1u‖2
T = −

3∑

i=1

riAi ≤ −
3∑

i=1

ri

2

3
Bi =

2

3
‖I1u‖2

T

That is the first part of Theorem 2.1. Similarly, we have

Ci =
1

24
[(u(Pi−1) − u(Pi+1))

2 + 2(u(Pi−1) − u(P̂i))
2 + 2(u(Pi+1) − u(P̂i))

2

+ 4(u(Pi−1) − u(P̂i))(u(Pi+1) − u(P̂i)) + 8(u(P̂i−1) − u(P̂i+1))
2]

=
1

24
[(u(Pi−1) − u(Pi+1))

2 + 8(u(P̂i−1) − u(P̂i+1))
2 + 2(u(Pi−1) + u(Pi+1) − 2u(P̂i))

2]

=
1

24

[1

2
(u(Pi−1) − u(Pi+1))

2 +
1

2
(u(Pi+1) − u(Pi−1))

2

+ (u(Pi−1) + u(Pi+1) − 2u(P̂i) + 2u(P̂i−1) − 2u(P̂i+1))
2

+ (u(Pi+1) + u(Pi−1) − 2u(P̂i) + 2u(P̂i+1) − 2u(P̂i−1))
2
]

=
1

24

[3

2
(u(Pi−1) − u(Pi+1))

2 + 4(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))
2

+ 4(u(Pi+1) − u(Pi−1))(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))

3

2
(u(Pi−1) − u(Pi+1))

2 + 4(u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))
2

+ 4(u(Pi−1) − u(Pi+1))(u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))
]

=
1

24

[(√
3

2
(u(Pi+1) − u(Pi−1)) + 2

√
2

3
(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))

)2

+
(√

3

2
(u(Pi−1) − u(Pi+1)) + 2

√
2

3
(u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))

)2

+
4

3
(u(Pi−1) − u(P̂i) + u(P̂i−1) − u(P̂i+1))

2

+
4

3
(u(Pi+1) − u(P̂i) + u(P̂i+1) − u(P̂i−1))

2
]

≥4

3
Ai.
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Hence ‖I2u − I1u‖2
T = −

3∑

i=1

riAi ≤ −
3∑

i=1

ri

3

4
Ci =

3

4
‖I2u‖2

T .

This completes the proof of the second inequality. With similar method, we can also

prove the following conclusions.

Theorem 2.2. ‖I1u‖T ≤
√

3

2
‖I2u‖T and ‖I2u‖T ≤

√
4

3
‖I1u‖T

3. Linear Elliptic Problem

Let Ω be a bounded, convex polygonal domain in R2 with the boundary ∂Ω. We

consider the elliptic model problem
{

Find u ∈ H1
0 (Ω), such that

a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω)

(3.1)

where a(u, v) =

∫

Ω
∇u∇vdxdy, (f, v) =

∫

Ω
fvdxdy and f sufficiently smooth.

To define a finite element method, we need a partition of Ω into elements E, for

example triangles in this paper. Let the triangulation T2 be regular with maximum

diameter 2h. Another triangulation T1 can be obtained by connecting the middle

points of edges for each triangle of T2. Let Vi (i = 1, 2) be the finite element space

composed of piecewise polynomials of order i defined on Ti. Thus Vi ⊂ H1(Ω), and

denote V 0
i = Vi

⋂
H1

0 (Ω). Define Ii : C0 −→ Vi, i.e., piecewise interpolation operator

of order i on the all vertices of triangles of T1.

This paper formulates the following Petrov-Galerkin approximation model
{

Find uh ∈ V 0
2 such that

a(uh, v) = (f, v), ∀v ∈ V 0
1

(3.2)

Theorem 3.1. Let u be the exact solution of (3.1), then there exists exactly one

finite element solution uh for (3.2) and there hold the estimates

‖u − uh‖a ≤ C‖u − I2u‖a (3.3)

‖u − uh‖ ≤ C · h‖u − I2u‖a (3.4)

where ‖u‖2 =

∫

Ω
u2dxdy and ‖u‖2

a =

∫

Ω
|∇u|2dxdy.

Proof. The variational problem (3.2) is equivalent to the following one

{
Find uh ∈ V 0

2 such that

a(uh, I1v) = (f, I1v), ∀v ∈ V 0
2

(3.5)

From (2.12) of Theorem 2.1 we have

a(v, I1v) =a(v, v) − a(v, v − I1v) ≥ ‖v‖2
a − ‖v‖a‖v − I1v‖a

≥‖v‖2
a −

√
3

4
‖v‖2

a =
(
1 −

√
3

4

)
‖v‖2

a, ∀v ∈ V 0
2 (3.6)
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This means that the bilinear functional a(v, I1v) defined on V 0
2 is positive definite.

Obviously a(v, I1v) is a continuous and (f, I1v) is continuous linear form on V 0
2 . Hence

there exists only one solution uh for the variational problem (3.2) by Lax-Milgram

Lemma. On the other hand, it can be seen from (3.1) and (3.5) that

a(u − uh, I1v) = 0, ∀v ∈ V 0
2

With the above equality and (3.6) and Theorem 2.2 the following estimates can be

achieved

‖I2u − uh‖2
a ≤C · a(I2u − uh, I1(I2u − uh)) = C · a(I2u − u, I1(I2u − uh))

≤C · ‖I2u − u‖a · ‖I2u − uh‖a

That completes the proof for (3.3).

At last by using Nitsche’s technique (3.4) can be proved. This completes the proof

of Theorem 2.1.

The iterated defect correction scheme established in [1] and [2] is

{
Find uh

i+1 ∈ V 0
1

a(uh
i+1, v) = a(uh

i , v) − {a(I2u
h
i , v) − (f, v)}, ∀v ∈ V 0

1

(3.7)

In this scheme uh
0 can be taken as the following linear finite element solution

{
Find uh

0 ∈ V 0
1

a(uh
0 , v) = (f, v), ∀v ∈ V 0

1

(3.8)

It can be seen that the coefficient matrices in the linear systems (3.7) and (3.8) are same.

After calculating uh
0 by (3.8) the first iterated solution uh

1 can be obtained from (3.7).

Many researches[2−5] are dedicated to estimating errors of uh
1 as well as higher order

interpolation of uh
1 approximating to the exact solution. It is the goal of this paper

to prove that for any chosen initial approximation solution uh
0 ∈ V 0

1 the quadratic

interpolation I2u
h
i+1 of the iterated solution uh

i+1 of (3.7) converges geometrically to

the Petrov-Galerkin approximation solution uh of (3.2).

Theorem 3.2. ∀uh
0 ∈ V 0

1 , the iterative scheme (3.7) is convergent and the following

estimation is valid.

‖I2u
h
i − uh‖a ≤ 1

1 −
√

3

4

(√
2

3

)i
‖uh

1 − uh
0‖a (3.9)

Proof. By (3.7), for any v ∈ V 0
1 ,

a(uh
i , v) = a(uh

i−1, v) − {a(I2u
h
i−1, v) − (f, v)} (3.10)

Then, from (3.7) and (3.10),

a(uh
i+1 − uh

i , v) = a(uh
i − uh

i−1, v) − a(I2u
h
i − I2u

h
i−1, v)
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= a((I − I2)(u
h
i − uh

i−1), v)

Taking v = uh
i+1 − uh

i , by using (2.11), it results in

‖uh
i+1 − uh

i ‖2
a ≤ ‖(I − I2)(u

h
i − uh

i−1)‖a‖uh
i+1 − uh

i ‖a

≤
√

2

3
‖uh

i − uh
i−1‖a · ‖uh

i+1 − uh
i ‖a

Hence we have

‖uh
i+1 − uh

i ‖a ≤
√

2

3
‖uh

i − uh
i−1‖a ≤

(√
2

3

)i
‖uh

1 − uh
0‖a

Substituting (3.2) into (3.7) results in a(uh
i+1 − uh

i , v) = a(uh − I2u
h
i , v), ∀v ∈ V 0

1 .

Let P : H1
0 (Ω) −→ V 0

1 denote the Ritz projection operator, then

uh
i+1 − uh

i = P (uh − I2u
h
i )

uh − I2u
h
i = uh − I2u

h
i − P (uh − I2u

h
i ) + uh

i+1 − uh
i

It can be seen, from the property of the orthogonal projection operator and (2.12), that

‖uh − I2u
h
i ‖a ≤ ‖uh − I2u

h
i − P (uh − I2u

h
i )‖a + ‖uh

i+1 − uh
i ‖a

≤ ‖uh − I2u
h
i − I1(uh − I2u

h
i )‖a + ‖uh

i+1 − uh
i ‖a

≤
√

3

4
‖uh − I2u

h
i ‖a + ‖uh

i+1 − uh
i ‖a

Finally one can write the following inequality

‖uh − I2u
h
i ‖a ≤ 1

1 −
√

3

4

‖uh
i+1 − uh

i ‖a ≤ 1

1 −
√

3

4

(√
2

3

)i
‖uh

1 − uh
0‖a

This completes the proof.

4. The semi-linear elliptic boundary problem

Consider the semi-linear elliptic boundary problem

{
−△u = f(z, u), in Ω

u = 0, on ∂Ω
(4.1)

where z = (x, y), f(z, u) and fu(z, u) are respectively continuous on the domain Ω ×
(−∞,∞), and for each (z, u) ∈ Ω × (−∞,∞)

|fu(z, u)| ≤ λ < Λ ≡ inf
w∈W 0

1,2(Ω)

a(w,w)

(w,w)
(4.2)
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The weak form of (4.1) is

{
Find u ∈ H1

0 (Ω), such that

a(u, v) = (f(z, u), v), ∀v ∈ H1
0 (Ω)

(4.3)

Similar to (3.2), define corresponding Petrov-Galerkin approximation as

{
Find uh ∈ V 0

2 , such that

a(uh, v) = (f(z, uh), v), ∀v ∈ V 0
1

(4.3)

and the iterated defect correction scheme of (4.3) as ([1])

{
Find uh

i+1 ∈ V 0
1 , such that

a(uh
i+1, v) = a(uh

i , v) − {a(I2u
h
i , v) − (f(z, I2u

h
i ), v)}, ∀v ∈ V 0

1

(4.4)

Assumed (4.2) satisfied, then there exists only one solution u, respectively, for (4.1)

and (4.3). In this section we will use the mean value formula in the following form

many times

f(z,w) − f(z, v) = fu(z, θw + (1 − θ)v)(w − v)

where θ ∈ (0, 1) is a function of z and w, v. For simplicity, abbreviate the above formula

by

f(z,w) − f(z, v) = fu(w − v)

and f(z, u) by f(u).

Theorem 4.1. Assumed (4.2) satisfied and γ1 =

√
3

4
+ λΛ−1

√
3

2
< 1, then (4.4)

exists only one solution uh and the following estimates are valid

‖u − uh‖a ≤ C‖I2u − u‖a (4.6)

‖u − uh‖ ≤ C · h‖I2u − u‖ (4.7)

Proof. For any w, v ∈ V 0
2 , from (3.6) and (4.2), we obtain

a(w − v, I1(w − v)) − (f(w) − f(v), I1(w − v)) ≥
(
1 −

√
3

4

)
‖w − v‖2

a

− ‖f(w) − f(v)‖‖I1(w − v)‖ ≥
(
1 −

√
3

4

)
‖w − v‖2

a

− ‖fu(w − v)‖‖I1(w − v)‖ ≥
(
1 −

√
3

4

)
‖w − v‖2

a

− λΛ−1

√
3

2
‖w − v‖2

a =
(
1 −

√
3

4
− λΛ−1

√
3

2

)
‖w − v‖2

a

=(1 − γ1)‖w − v‖2
a (4.8)

That is, the strong elliptic condition is satisfied. On the other hand, for any w1, w2, v ∈
V 0

2 ,

|a(w1 − w2, I1v) − (f(w1) − f(w2), I1v)| ≤ C‖w1 − w2‖a · ‖I1v‖a + ‖fu(w1 − w2)‖ · ‖I1v‖
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≤C · ‖w1 − w2‖a · ‖v‖a (4.9)

That is, the continuity condition is also satisfied. Hence by Lax-Milgram in the non-

linear form (4.4) has one solution.

Also based on (4.3) and (4.4) it can be seen that

a(u − uh, v) − (f(u) − f(uh), v) = 0, ∀v ∈ V 0
1 (4.10)

It follows from (4.8) and (4.10)

(1 − γ1)‖I2u − uh‖2
a ≤a(I2u − uh, I1(I2u − uh)) − (f(I2u) − f(uh), I1(I2u − uh))

=a(I2u − u, I1(I2u − uh)) − (f(I2u) − f(u), I1(I2u − uh))

+ a(u − uh, I1(I2u − uh)) − (f(u) − f(uh), I1(I2u − uh))

=a(I2u − u, I1(I2u − uh)) − (f(I2u) − f(uh), I1(I2u − uh))

≤C‖I2u − u‖a · ‖I2u − uh‖a + λ‖I2u − u‖ · ‖I1(I2u − uh)‖
≤C‖I2u − u‖a · ‖I2u − uh‖a (4.11)

Thus (4.6) is derived from the above inequality.

By using the mean value theorem, from (4.10) we derive

a(u − uh, v) − (fu(u − uh), v) = 0, ∀v ∈ V 0
1 (4.12)

Let Ψ ≡ 1

‖u − uh‖
(u− uh) and ϕ ∈ H1

0 (Ω) be the exact solution of the following linear

problem

a(v, ϕ) + (fu · v, ϕ) = (v,Ψ), ∀v ∈ H1
0 (Ω) (4.13.)

Then taking v = u − uh we have, by using of (4.12),

‖u − uh‖ = a(u − uh, ϕ) + (fu · (u − uh), ϕ)

= a(u − uh, ϕ − I1ϕ) + (fu · (u − uh), ϕ − I1ϕ)

≤ C · h‖u − uh‖a · ‖ϕ‖2 (4.14)

Let us rewrite equation (4.13) as follows

a(v, ϕ) = (v,Ψ) − (fu · v, ϕ), ∀v ∈ H1
0 (Ω).

Based on the priori estimate of generalized solution of the boundary problem we have

‖ϕ‖2 ≤ C · ‖fuϕ + Ψ‖ (4.15)

Moreover with the positive definiteness of a(·, ·) and (4.2), it can be derived from (4.13)

‖ϕ‖a ≤ C · ‖Ψ‖

Finally from this inequality and (4.15) we can obtain

‖ϕ‖2 ≤ C · ‖Ψ‖ = C.
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Subsituting the above inequality into (4.14) results in the final estimate (4.7).

Theorem 4.2. Suppose that the hypotheses of Theorem 4.1 are satisfied and that

γ2 =

√
2

3
+λΛ−1

√
4

3
< 1, then the interpolation I2u

h
i+1 of the (i+1)th iterated solution

uh
i+1 converges to the Petrov-Galerkin solution uh of (4.4) and the corrected solution

obeys the estimate

‖I2u
h
i+1 − uh‖a ≤

√
2 · γi+1

2 ‖I2u
h
0 − uh‖a (4.16)

Proof. From (4.5) it is obvious that

a(uh
i+1 − uh

i , v) = a(uh
i − uh

i−1, v) − {a(I2u
h
i − I2u

h
i−1, v) − (f(I2u

h
i ) − f(I2u

h
i−1), v)}

≤ a(uh
i − uh

i−1, v) − a(I2u
h
i − I2u

h
i−1, v) + (f ′

u(I2u
h
i − I2u

h
i−1), v)

≤ ‖uh
i − uh

i−1 − I2(u
h
i − uh

i−1)‖a · ‖v‖a + λ‖I2(u
h
i − uh

i−1)‖ · ‖v‖

≤
√

2

3
‖uh

i − uh
i−1‖a‖v‖a + λΛ−1‖I2(u

h
i − uh

i−1)‖a · ‖v‖a

≤
(√

2

3
+ λΛ−1

√
4

3

)∥∥∥uh
i − uh

i−1

∥∥∥
a
‖v‖a

Take v = uh
i+1 − uh

i , then

‖uh
i+1 − uh

i ‖a ≤ γ2‖uh
i − uh

i−1‖a ≤ · · · ≤ γi
2‖uh

1 − uh
0‖a

As γ2 < 1, it can be seen that {uh
i } is a Cauchy sequence of V 0

1 . Hence there exists

û ∈ V 0
1 such that ‖uh

i − û‖a −→ 0, for i −→ ∞. This derives

‖I2u
h
i − I2û‖a ≤

√
4

3
‖uh

i − û‖a −→ 0, for i −→ ∞.

Take i −→ ∞ in (4.5), then

a(û, v) = a(û, v) − {a(I2û, v) − (f(I2û), v)} (4.17)

That is

a(I2û, v) = (f(I2û), v), ∀v ∈ V 0
1 .

Consequently I2û is a solution of (4.4) and I2û = uh with uniqueness. This completes

the proof of first part of Theorem 4.2. On the other hand with (4.5)-(4.17) we have

a(uh
i+1 − û, v) = a(uh

i − û, v) − {a(I2u
h
i − I2û, v) − (f(I2u

h
i ) − f(I2û), v)}

≤ a(uh
i − û − I2(u

h
i − û), v) + ‖f(I2u

h
i ) − f(I2û)‖ ‖v‖

≤ ‖uh
i − û − I2(u

h
i − û)‖a · ‖v‖a + ‖f ′

u(I2u
h
i − I2û)‖ · ‖v‖

≤
√

2

3
‖uh

i − û‖a‖v‖a + λΛ−1‖I2(u
h
i − û)‖a · ‖v‖a

≤
(√

2

3
+ λΛ−1

√
4

3

)
‖uh

i − û‖a‖v‖a ≤ γ2‖uh
i − û‖a‖v‖a
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Write v = uh
i+1 − û, then

‖uh
i+1 − û‖a ≤ γ2‖uh

i − û‖a ≤ · · · ≤ γi+1
2 ‖uh

0 − û‖a

and by Theorem 2.2

‖I2u
h
i+1 − I2û‖a ≤

√
4

3
γi+1
2 ‖I1I2(u

h
0 − û)‖a ≤

√
2γi+1

2 ‖I2u
h
0 − I2û‖a

This completes the proof.

Remark 1. When Ω is a concave polygonal domain, the all results except for (2.12)

of Theorem 3.1 and (4.7) of Theorem 4.1 are valid with some remedy.

Remark 2. Let

a(u, v) =

∫

Ω
K(x, y)∇u(x, y)∇v(x, y)dxdy

where K(x, y) is continuous and K(x, y) ≥ δ > 0̇, then it is easily proved that

∫

Ω
K[((I2u − I1u)′x)2 + ((I2u − I1u)′y)

2]dxdy ≤ Kh

∫

Ω
K[((I1u)′x)2 + ((I1u)′y)

2]dxdy

and
∫

Ω
K[((I2u − I1u)′x)2 + ((I2u − I1u)′y)

2]dxdy ≤ Kh

∫

Ω
K[((I2u)′x)2 + ((I2u)′y)

2]dxdy

where lim
h→0

Kh =
2

3
, lim

h→0
Kh =

3

4
.

Hence while h is sufficiently small, the theorems of this paper are valid for a(u, v) =∫

Ω
K(x, y)∇u(x, y)∇v(x, y)dxdy.
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