- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
An iterative nonoverlapping domain decomposition procedure is proposed and analyzed for linear elliptic problems. At the interface of two subdomains, one subdomain problem requires that Dirichlet data be passed to it from the previous iteration level, while the other subdomain problem requires that Neumann data be passed to it. This procedure is suitable for parallel processing. A convergence analysis is established. Standard and mixed finite element methods are employed to give discrete versions of this domain decomposition algorithm. Numerical experiments are conducted to show the effectiveness of the method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9148.html} }An iterative nonoverlapping domain decomposition procedure is proposed and analyzed for linear elliptic problems. At the interface of two subdomains, one subdomain problem requires that Dirichlet data be passed to it from the previous iteration level, while the other subdomain problem requires that Neumann data be passed to it. This procedure is suitable for parallel processing. A convergence analysis is established. Standard and mixed finite element methods are employed to give discrete versions of this domain decomposition algorithm. Numerical experiments are conducted to show the effectiveness of the method.