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Abstract

An iterative nonoverlapping domain decomposition procedure is proposed and
analyzed for linear elliptic problems. At the interface of two subdomains, one
subdomain problem requires that Dirichlet data be passed to it from the previous
iteration level, while the other subdomain problem requires that Neumann data
be passed to it. This procedure is suitable for parallel processing. A convergence
analysis is established. Standard and mixed finite element methods are employed
to give discrete versions of this domain decomposition algorithm. Numerical ex-
periments are conducted to show the effectiveness of the method.

Key words: Domain decomposition methods, finite element methods, parallel com-
puting

1. Introduction

Nonoverlapping domain decomposition methods have received a lot of attention
during the past few years, since they have advantages of dealing with transmission
problems and allow efficient parallelism. For a recent development of these methods, we
refer to the papers by Funaro, Quarteroni and Zanolli[7], Marini and Quarteroni[11,12],
Lions[10], Després[4], Douglas, Paes Leme, Roberts and Wang[5], and the author[13,14].

In this paper, we propose an iterative nonoverlapping domain decomposition proce-
dure for second order partial differential equations. At the interface of two subdomains,
one subdomain problem requires that Dirichlet data be passed to it from the previous
iteration level, while the other subdomain problem requires that Neumann data be
passed to it. Thus, this procedure can be efficiently implemented on computers with
parallel architecture, as an improvement of the method in [7], [11], [12]. Both the
method and the convergence analysis in this paper are closely related to and based
on the techniques given in [7], [11], [12]. However, we will introduce a Galerkin ap-
proximation with Lagrange multipliers and a hybridized mixed finite element method,
which were not dealt with in [7], [11], [12]. We will also prove that the error reduction
factors per iteration in Galerkin approximations and hybridized mixed finite element
approximations are independent of the grid size.

In §2, the domain decomposition method is described for general elliptic problems.
In §3, a convergence analysis is carried out for general linear elliptic problems in multi-
dimensions. In §4, a finite element approximation is employed. In §5, a finite element
approximation with Lagrange multipliers is considered. Then, in §6, a hybridized mixed
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finite element method is applied. Finally in §7, numerical experiments are provided to
check the correctness of the theory.

2. Domain Decomposition Method

Let Ω be a smooth bounded domain or a convex polygon in R2 with boundary ∂Ω.
Consider the following boundary value problem: find u ∈ H1(Ω) such that

Lu = f in Ω, u = g on ∂Ω, (1)

where f ∈ L2(Ω) and g ∈ H
1

2 (∂Ω) are given, and the operator L is defined by

Lu = −
2

∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

+ a0(x)u. (2)

The coefficients {aij} are assumed to be symmetric, uniformly positive definite, bounded,
and piecewise smooth in Ω, and a0 ≥ 0.

For simplicity, we partition the domain Ω into two nonoverlapping subdomains Ω1

and Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2, Ω1∩Ω2 = 0 We denote the interface by Γ = ∂Ω1 ∩∂Ω2.
The following argument makes it possible to include more than two computational
subdomains: If either Ω1 or Ω2 is not a connected set, then decompose them into
connected components:

Ω1 =
N1∪
j=1

Ω1j, Ω2 =
N2∪
j=1

Ω2j, (3)

where N1 and N2 are some positive integers. However, we must confine ourselves to
the case in which no interior vertices are allowed. That is, only strip-type domain
decompositions are considered here. Domain decompositions with cross points will be
treated later [6].

We now define the following domain decomposition method: Choose u0
k ∈ H1(Ωk)

with u0
k|∂Ωk∩∂Ω = g, k = 1, 2. For n = 0, 1, 2, · · ·, we construct the sequence un+1

k ∈
H1(Ωk) with un+1

k |∂Ω∩∂Ωk
= g satisfying

Lun+1
1 = f in Ω1,

∂un+1
1

∂ν1
A

= θ
∂un

1

∂ν1
A

+ (1 − θ)
∂un

2

∂ν1
A

on Γ, (4)

Lun+1
2 = f in Ω2, un+1

2 = δun
1 + (1 − δ)un

2 on Γ, (5)

where
∂un

k

∂νk
A

=
2

∑

i,j=1

aij
∂un

k

∂xj
νk

i , νk = {νk
1 , ν

k
2 } is the outward unit normal vector to ∂Ωk,

and θ, δ ∈ (0, 1) are relaxation parameters that will be determined to ensure and to
accelerate the convergence of the iterative procedure.

The differences between this method and the one in [7], [11], [12] lie in that the
former method gives parallelizable subdomain problems at each iteration level, while
the latter method leads to sequential subdomain problems, and that the former utilizes
the Neumann boundary values on an interface from two neighboring subdomains, while
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the latter just uses the Neumann boundary value from its neighboring subdomain. In
other words, our method introduces an underrelaxation mechanism in the iterative
process.

3. Convergence Analysis

In this section, we give a convergence analysis of the iterative procedure (4)–(5)
for general self-adjoint linear elliptic problems. Keep in mind that we only treat strip-
type domain decompositions in this work. We first introduce some notation. Define

the Hilbert space by interpolation: H
1

2

00(Γ) = [H1
0 (Γ), L2(Γ)]1/2. The space H

1

2

00(Γ)

is strictly contained in H
1

2

0 (Γ); see Lions and Magenes [9, page 66], or Bjorstad and
Widlund[2]. We introduce the Hilbert spaces: Vk = {v ∈ H1(Ωk): v|∂Ω∩∂Ωk

= 0}, k =

1, 2. Let γ0 denote the trace operator from H1(Ωk) onto H
1

2 (Γ). For any φ ∈ H
1

2

00(Γ),
we denote by R1φ and R2φ the following extensions to Ω1 and Ω2, respectively, such
that

Rkφ ∈ Vk : L(Rkφ) = 0 in Ωk, γ0(Rkφ) = φ on Γ, k = 1, 2. (6)

Introduce the bilinear form

ak(u,w) =
2

∑

i,j=1

∫

Ωk

aij
∂u

∂xj

∂w

∂xi
dx+

∫

Ωk

a0uw dx, k = 1, 2. (7)

We define an operator T21 ∈ L(H
1

2

00(Γ), H
1

2

00(Γ)) as follows: T21 : φ → T21φ = γ0w,
where w ∈ V1 satisfies

Lw = 0 in Ω1,
∂w

∂ν1
A

= −∂(R1φ)

∂ν2
A

on Γ. (8)

The variational form of (8) can be written as:

a1(R1T21φ,w) = −a2(R2φ,R2γ0w), ∀w ∈ V1. (9)

It is readily seen that if w ∈ H1(Ωk) and Lw = 0 in Ωk, then ∂w
∂νk

A

∈ H−1/2(∂Ωk).

This ensures the existence of the function w ∈ H1(Ω1) in the definition of the operator
T21. This actually requires a nontangential approach along Γ to ∂Ω; i.e., no cusps are
allowed where Γ intersects ∂Ω. For convenience we will use the following norms in V1

and V2:

‖w‖2
k = ak(w,w), ∀w ∈ Vk, k = 1, 2. (10)

We now begin the convergence analysis for the scheme (4)–(5) by noting that the
error enk ≡ uk − un

k ∈ Vk satisfies the following equations:

Len+1
1 = 0 in Ω1,

∂en+1
1

∂ν1
A

= θ
∂en1
∂ν1

A

+ (1 − θ)
∂en2
∂ν1

A

on Γ, (11)

Len+1
2 = 0 in Ω2, en+1

2 = δen1 + (1 − δ)en2 on Γ (12)
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Combining (8) and (11) we have

en+1
1 = R1γ0e

n+1
1 = θen1 + (1 − θ)T21γ0e

n
2 . (13)

Combining (6) and (12) we have

en+1
2 = R2γ0e

n+1
2 = δR2γ0e

n
1 + (1 − δ)en2 . (14)

Theorem 4.1. Define the positive number τ = sup
φ∈H

1/2

00
(Γ)

{‖R2φ‖2
2/‖R1φ‖2

1}. Then,

the following error reduction estimate holds:

‖en+1
1 ‖2

1 + ‖en+1
2 ‖2

2 ≤ [θ2 + τδ2 + τ |δ(1 − δ) − θ(1 − θ)|]‖en1‖2
1

+ [τ(1 − θ)2 + (1 − δ)2 + |δ(1 − δ) − θ(1 − θ)|]‖en2‖2
2. (15)

Proof. From (13) we see that

‖en+1
1 ‖2

1 = a1(e
n+1
1 , en+1

1 )

= θ2‖en1‖2
1 + 2θ(1 − θ)a1(e

n
1 , R1T21γ0e

n
2 ) + (1 − θ)2‖R1T21γ0e

n
2‖2

1. (16)

We now estimate (16) term-by-term. Letting w = R1T21φ in (9) we have

a1(R1T21φ,R1T21φ) = −a2(R2φ,R2T21φ) ≤ ‖R2φ‖2‖R2T21φ‖2,

which, together with the definition of τ , yields

‖R1T21φ‖1 ≤
√
τ‖R2φ‖2, ∀φ ∈ H

1

2

00(Γ). (17)

From (9) we have

a1(R1φ,R1T21ψ) = −a2(R2φ,R2ψ), ∀φ, ψ ∈ H
1

2

00(Γ). (18)

Substituting (17) and (18) into (16) we have

‖en+1
1 ‖2

1 ≤ θ2‖en1‖2
1 + τ(1 − θ)2‖en2‖2

2 − 2θ(1 − θ)a2(R2γ0e
n
1 , e

n
2 )

= θ2‖en1‖2
1 + τ(1 − θ)2‖en2‖2

2 − 2θ(1 − θ)a2(R2γ0e
n
1 , e

n
2 ). (19)

Next, from (14) we have

‖en+1
2 ‖2

2 = a2(e
n+1
2 , en+1

2 ) = δ2‖R2γ0e
n
1‖2

2 + (1 − δ)2‖en2‖2
2 + 2δ(1 − δ)a2(R2γ0e

n
1 , e

n
2 )

≤ τδ2‖en1‖2
1 + (1 − δ)2‖en2‖2

2 + 2δ(1 − δ)a2(R2γ0e
n
1 , e

n
2 ). (20)

Combining (19) and (20) and applying Schwarz inequality gives (15). This completes
the proof.

Corollary 4.2. The domain decomposition method (4)–(5) is convergent in the

energy norm if θ = 1 − δ and δ < min{1, 2
1+τ }. The optimal parameters are δ = 1

1+τ

and θ = τ
1+τ . In particular, if θ = δ = 1

2 , when τ = 1, which is true when Ω1 = Ω2 and

the coefficients aij , a0 are constants, then

‖en+1
1 ‖2

1 + ‖en+1
2 ‖2

2 ≤ 1

2
(‖en1‖2

1 + ‖en2‖2
2). (21)
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4. Finite Element Approximation

Suppose that the domain Ω is decomposed into nonoverlapping subdomains Ω1 and
Ω2 with interface Γ. For an easy presentation we assume that g = 0 in (1). Let
Th = {T} be a regular triangulation of Ω with no elements crossing the interface Γ,
where h is the grid size. Define a conforming Lagrange finite element space[12]

W h = {w ∈ C(Ω̄) : w|T ∈ Pr(T ) ∀T ∈ Th, w|∂Ω = 0}, (22)

where Pr(T ) denotes the space of polynomials of degree ≤ r on T , and define the finite
element spaces over the subdomains:

W h
k = {w ∈ H1(Ωk) : w|T ∈ Pr(T ) ∀T ∈ Th, w|∂Ω∩∂Ωk

= 0}, (23)

Mh
k = {w ∈W h

k : w|∂Ωk
= 0}. (24)

Let Σh denote the subdivision of Γ induced by Th. Set

Φh = {φ ∈ C(Γ) : φ|I ∈ Pr(I) for ∀I ∈ Σh, φ|∂Γ = 0}. (25)

For k = 1, 2 we define the discrete extension operators Rh
k : Φh →W h

k by

Rh
kφ ∈W h

k : ak(R
h
kφ,w) = 0, ∀w ∈Mh

k ; Rh
kφ = φ on Γ. (26)

Let Un
k be the finite element approximation of un

k . We define the following discrete
version of our domain decomposition method. Choose U0

k ∈ W h
k , k = 1, 2. For n =

0, 1, 2, · · ·, find Un+1
k ∈W h

k such that

a1(U
n+1
1 , w) =(1 − θ)(f,w)Ω1

+ (1 − θ)(f,Rh
2γ0w)Ω2

+ θa1(U
n
1 , w) − (1 − θ)a2(U

n
2 , R

h
2γ0w), ∀w ∈W h

1 , (27)

a2(U
n+1
2 , w) =(f,w)Ω2

, ∀w ∈Mh
2 ; Un+1

2 = δUn
1 + (1 − δ)Un

2 on Γ, (28)

where (f, g)Ωk
=

∫

Ωk

fg dx.

Note that, in obtaining (27), the conormal derivatives at the interface at the iter-
ation level n were replaced by the bilinear forms defined over the subdomains. This
replacement avoids requiring continuity of the conormal derivatives upon convergence.
This is necessary in the finite element approximation, since when applying piecewise
linear interpolation polynomials, for example, the continuity of conormal derivatives
would result in a global linear polynomial in the elements adjacent to the interface.

Note that the approximation can also be applied to nonconforming finite elements.
See [8] for details. The analysis follows readily from §3.

5. Finite Element Approximation with Lagrange Multipliers

Suppose that the domain Ω is decomposed into nonoverlapping subdomains Ω1 and
Ω2 with interface Γ. Without loss of generality we assume that g = 0 in (1). Then, the
variational formulation of the scheme (4)–(5) can be written as:

a1(u
n+1
1 , w) = θ

〈

∂un
1

∂ν1
A

, w

〉

Γ
+ (1 − θ)

〈

∂un
2

∂ν1
A

, w

〉

Γ
+ (f,w)Ω1

, ∀w ∈ V1, (29)
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a2(u
n+1
2 , w) −

〈

∂un+1
2

∂ν2
A

, w

〉

Γ
= (f,w)Ω2

, ∀w ∈ V2; u
n+1
2 = δun

1 + (1 − δ)un
2 on Γ,

(30)

where 〈·, ·〉 denotes the inner product over the interface.

Replace the conormal derivatives
∂un

k

∂νk
A

by Lagrange multipliers λn
k ; (29)–(30) now

becomes:

a1(u
n+1
1 , w) = 〈θλn

1 − (1 − θ)λn
2 , w〉Γ + (f,w)Ω1

, ∀w ∈ V1, (31)

a2(u
n+1
2 , w) − 〈λn+1

2 , w〉Γ = (f,w)Ω2
, ∀w ∈ V2; un+1

2 = δun
1 + (1 − δ)un

2 on Γ,
(32)

λn+1
1 = θλn

1 − (1 − θ)λn
2 . (33)

The procedure (31)–(32) is the domain decomposition method with Lagrange mul-
tipliers at the continuous level, a variant of (4)–(5). The convergence of the scheme
(31)–(32) can be easily established under the same hypothesis as assumed earlier and
the proof is omitted here. We now formulate the finite element version of this pro-
cedure. Let Th = {T} be a regular triangulation of Ω with no elements crossing the
interface Γ. Define the finite element spaces

W h
k = {w ∈ H1(Ωk) : w|T ∈ Pr(T ) ∀T ∈ Th, w|∂Ω∩∂Ωk

= 0}, k = 1, 2, (34)

where Pr(T ) denotes the space of polynomials of degree ≤ r on T . Let Zh be the
space of the restrictions on the interface Γ of the functions in W h

k . Note that there
are two copies of such space assigned: one from Ω1 and the other from Ω2. We denote
them by Zh

1 and Zh
2 , respectively. Let {Un

k ,Λ
n
k} ∈ W h

k × Zh
k denote the finite element

approximation of {un
k , λ

n
k}. Then, the finite element domain decomposition method

with Lagrange multipliers is constructed as follows:

a1(U
n+1
1 , w) = 〈θΛn

1 − (1 − θ)Λn
2 , w〉Γ + (f,w)Ω1

, ∀w ∈W h
1 , (35)

{

a2(U
n+1
2 , w) − 〈Λn+1

2 , w〉Γ = (f,w)Ω2
, ∀w ∈W h

2 ;

crUn+1
2 = δUn

1 + (1 − δ)Un
2 on Γ,

(36)

Λn+1
1 = θΛn

1 − (1 − θ)Λn
2 . (37)

Note that the finite element approximation with Lagrange multipliers on the interface
for problem (1)–(2) reads: find {uh

k , λh
k} ∈W h

k × Zh
k such that

ak(u
h
k , w) − 〈λh

k , w〉Γ = (f,w)Ωk
∀w ∈W h

k , k = 1, 2, (38)

uh
1 = uh

2 on Γ. (39)

It follows easily that the function uh, where uh|Ωk
= uh

k , solves the standard finite
element problem without domain decomposition. Indeed, if uh is the standard finite
element solution, let uh

k = uh|Ωk
, k = 1, 2, and define λh

k ∈ Zh
k satisfying

〈λh
1 , w〉Γ = (f,Rh

2γ0w)Ω2
− a2(u

h
2 , R

h
2γ0w), ∀w ∈W h

1 , (40)

〈λh
2 , w〉Γ = (f,Rh

1γ0w)Ω1
− a1(u

h
1 , R

h
1γ0w), ∀w ∈W h

2 , (41)
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where Rh
1 and Rh

2 are given by (26). Note that uh|Ωk
satisfies

a1(u
h|Ω1

, w) + a2(u
h|Ω2

, Rh
2γ0w) = (f,w)Ω1

+ (f,Rh
2γ0w)Ω2

, ∀w ∈W h
1 ,

(42)

a1(u
h|Ω1

, Rh
1γ0w) + a2(u

h|Ω2
, w) = (f,Rh

1γ0w)Ω1
+ (f,w)Ω2

, ∀w ∈W h
2 .

(43)

Then, {uh
k , λ

h
k} is the solution of (38)–(39). Using this fact, we can easily make the

convergence analysis for the scheme (35)–(37).

6. Mixed Finite Element Approximation

As seen in the last two sections, the continuity of the flux variable at the interface
cannot be included explicitly in the finite element approximations. Similarly, the con-
tinuity of the scalar (pressure) variable cannot be imposed explicitly in a mixed finite
element approximation. In this section, we will introduce Lagrange multipliers in place
of the scalar variable at the interface.

Denote the matrix (aij)d×d by A and the flux −A∇u by q. The Dirichlet problem (1)
with homogeneous boundary condition has the weak form: seeking {q, u} ∈ V ×W ≡
H(div,Ω) × L2(Ω) such that

(A−1q, v)Ω − (u,div v)Ω = 0, ∀ v ∈ V, (44)

(div q, w)Ω + (a0u,w)Ω = (f,w)Ω, ∀ w ∈W. (45)

Let us decompose the domain Ω into nonoverlapping subdomains Ω1 and Ω2 with
interface Γ, and let Vk = H(div,Ωk), Wk = L2(Ωk). Assume that Th is a subdivision
of the domain Ω with no elements crossing the interface Γ, and V h × W h ⊂ V ×
W be a mixed finite element space[3], which is defined through local spaces V h

k ×
W h

k . Since functions in W h are allowed to be discontinuous across the interface Γ,
the pressure continuity condition cannot be imposed directly. Instead, we introduce
Lagrange multipliers[1] at the interface Γ. Assume that, when qk = qh|Ωk

, qh ∈ V h, its
normal component qk ·νk on the interface Γ is a polynomial of some fixed degree τ , where
for simplicity we assume τ independent of the edges of the elements. Let Λh be the
space of all such polynomials. Note that again there are copies of such space assigned
from Ω1 and from Ω2. We denote them by Λh

1 and Λh
2 , respectively. For notational

convenience, we drop the superscript h on all of the approximate quantities. Then, the
hybridized mixed finite element method is given by seeking {qk, uk, λk} ∈ Vk ×Wk ×Λk

such that

(A−1qk, v)Ωk
− (uk,div v)Ωk

+ 〈λk, v · νk〉Γ = 0, ∀v ∈ Vk, (46)

(div qk, w)Ωk
+ (a0uk, w)Ωk

= (f,w)Ωk
, ∀w ∈Wk, (47)

q1 · ν1 + q2 · ν2 = 0 on Γ. (48)

It follows easily that the pair {q, u}, where q|Ωk
= qk and u|Ωk

= uk, solves the original
mixed finite element problem.
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We are now in a position to formulate the hybrid mixed finite element version of
our iterative procedure (4)–(5). Choose an initial guess {q0k, u0

k, λ
0
k} ∈ Vk ×Wk × Λk

arbitrarily and compute {qn+1
k , un+1

k , λn+1
k } ∈ Vk ×Wk × Λk such that

(A−1qn+1
1 , v)Ω1

− (un+1
1 ,div v)Ω1

+ 〈λn+1
1 , v · ν1〉Γ = 0, ∀ v ∈ V1, (49)

(div qn+1
1 , w)Ω1

+ (a0u
n+1
1 , w)Ω1

= (f,w)Ω1
, ∀ w ∈W1, (50)

qn+1
1 · ν1 = θqn

1 · ν1 + (1 − θ)qn
2 · ν1 on Γ, (51)

and

(A−1qn+1
2 , v)Ω2

− (un+1
2 ,div v)Ω2

= −〈δλn
1 + (1 − δ)λn

2 , v · ν2〉Γ, ∀ v ∈ V2,
(52)

(div qn+1
2 , w)Ω2

+ (a0u
n+1
2 , w)Ω2

= (f,w)Ω2
, ∀w ∈W2, (53)

λn+1
2 = δλn

1 + (1 − δ)λn
2 . (54)

We now briefly discuss the error analysis. Let rn
k = qk−qn

k , enk = uk−un
k , µn

k = λ|k−λn
k ,

k = 1, 2. Then, by combining (46)–(48) and (49)–(54), we have the following error
equations:

(A−1rn+1
1 , v)Ω1

− (en+1
1 ,div v)Ω1

+ 〈µn+1
1 , v · ν1〉Γ = 0, ∀v ∈ V1, (55)

(div rn+1
1 , w)Ω1

+ (a0e
n+1
1 , w)Ω1

= 0, ∀w ∈W1, (56)

rn+1
1 · ν1 = θrn

1 · ν1 + (1 − θ)rn
2 · ν1 on Γ, (57)

and

(A−1rn+1
2 , v)Ω2

− (en+1
2 ,divv)Ω2

= −〈δµn
1 + (1 − δ)µn

2 , v · ν2〉Γ, ∀v ∈ V2,
(58)

(div rn+1
2 , w)Ω2

+ (a0e
n+1
2 , w)Ω2

= 0, ∀w ∈W2, (59)

νn+1
2 = δνn

1 + (1 − δ)νn
2 . (60)

In order to make error analysis, we now introduce some notation. Let Φ = {ψ · νk:
ψ ∈ Vk|Γ, k = 1, 2}. Define the extension operators: Rk : φ ∈ Φ → {R1

kφ,R
2
kφ,R

3
kφ} ∈

Vk ×Wk × Λk by

(A−1R1
kφ, v)Ωk

− (R2
kφ,div v)Ωk

+ 〈R3
kφ, v · νk〉Γ = 0, ∀v ∈ Vk, (61)

(div R1
kφ,w)Ωk

+ (a0R
2
kφ,w)Ωk

= 0, ∀w ∈Wk, (62)

R1
kφ · νk = φ on Γ. (63)

We introduce the following operator from Φ into itself: T12: φ ∈ Φ → T12φ = ψ1 ·ν2 ∈ Φ,
where {ψ1, ψ2} ∈ V2 ×W2 satisfies:

(A−1ψ1, v)Ω2
− (ψ2,div v)Ω2

= −〈R3
1φ, v · ν2〉Γ, ∀v ∈ V2, (64)

(div ψ1, w)Ω2
+ (a0ψ2, w)Ω2

= 0, ∀w ∈W2. (65)

Again, let γ0 denote the restriction operator on Γ. From (55)–(57) we have

γ0r
n+1
1 · ν1 = θγ0r

n
1 · ν1 − (1 − θ)γ0r

n
2 · ν2. (66)
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By the superposition principle and from (58), we have

γ0r
n+1
2 · ν2 = δT12(γ0r

n
1 · ν1) + (1 − δ)γ0r

n
2 · ν2. (67)

For convenience we define the following norm on the interface Γ :

|φ|2k = (A−1R1
kφ,R

1
kφ)Ωk

+ (a0R
2
kφ,R

2
kφ)Ωk

, for φ ∈ Φ, k = 1, 2, (68)

and introduce the least finite and positive quantity σ that does not depend on the grid
size, such that: sup

φ∈Φ
{|φ|21/|φ|22} ≤ σ. We can easily obtain the following error estimate.

Theorem 2. For the hybrid mixed domain decomposition method (49)–(54),

(A−1rn+1
1 ,rn+1

1 )Ω1
+ (a0e

n+1
1 , en+1

1 )Ω1
+ (A−1en+1

2 , en+1
2 )Ω2

+ (a0e
n+1
2 , en+1

2 )Ω2

≤ [θ2 + δ2σ + |δ(1 − δ) − θ(1 − θ)|][(A−1rn
1 , r

n
1 )Ω1

+ (a0e
n
1 , e

n
1 )Ω1

]

+ [(1 − θ)2σ + (1 − δ)2 + σ|δ(1 − δ) − θ(1 − θ)|]
· [(A−1en2 , e

n
2 )Ω2

+ (a0e
n
2 , e

n
2 )Ω2

]. (69)

7. Numerical Experiments

In this section, we conduct some numerical experiments for our domain decompo-
sition method (4)–(5) for the example

∂

∂x

(

a(x)
∂u

∂x

)

+
∂2u

∂y2
= f, (x, y) ∈ Ω, (70)

u = g, (x, y) ∈ ∂Ω, (71)

where Ω = (0, 1)× (0, 1). The functions f and g are chosen such that the exact solution

is: u(x, y) = y(1 − y) sin

(

π
2x

)

.

First, we take a(x) = 1 in (70) and check the correctness of the estimate (21).
We apply the finite element scheme without Lagrange multipliers in each subdomain.
The interpolation polynomials consist of piecewise linears in x tensored with piecewise
linears in y. The initial guesses are always taken to be zero. Let the domain Ω be divided
into two equal subdomains Ω1 = (0, 0.5)×(0, 1), and Ω2 = (0.5, 1)×(0, 1). The interface
is Γ = {0.5}× (0, 1). The optimal relaxation parameters in this case are θ = δ = 1

2 . We
choose the grid sizes to be 1

20× 1
20 , 1

50× 1
50 , and 1

80× 1
80 , respectively. The errors between

the exact solution of the differential problem and the domain decomposition solution
are evaluated in the L∞-norm over the two subdomains at each iteration and are shown
in Table 1. Now we decompose the domain into four subdomains: Ω1 = (0, 1)×(0, 0.25),
Ω2 = (0, 1)×(0.25, 0.5), Ω3 = (0, 1)×(0.5, 0.75), and Ω4 = (0, 1)×(0.75, 1). By coloring
Ω1 and Ω3 red, and Ω2 and Ω4 black, we still can view this as a two-subdomain case,
which is convergent by our theory. The results are given in Table 2.
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Table 1 Numerical results with interface at x = 0.5, and grid size 1

20
×

1

20
,

1

50
×

1

50
, 1

80
×

1

80
, respectively. The errors are shown in the L∞-norm.

Iterations Grid size = 1

20
×

1

20
Grid size = 1

50
×

1

50
Grid size = 1

80
×

1

80

1 1.2196E-1 1.2967E-1 1.2969E-1

2 5.2741E-2 5.3061E-2 5.3087E-2

5 7.7585E-3 7.6459E-3 7.6219E-3

8 8.1109E-4 1.0476E-3 9.4343E-4

11 3.4268E-4 1.0113E-4 9.1895E-5

Table 2 Numerical results with four subdomains. The interfaces are at

y = 0.25, y = 0.5, y = 0.75. The grid size is chosen to be 1

20
×

1

20
, 1

50
×

1

50
,

1

80
×

1

80
, respectively. The errors are shown in the L∞-norm.

Iterations Grid size = 1

20
×

1

20
Grid size = 1

50
×

1

50
Grid size = 1

80
×

1

80

1 1.7287E-1 1.7670E-1 1.7674E-1

2 6.5033E-2 6.5118E-2 9.5140E-2

5 9.7234E-3 8.7285E-3 8.7448E-3

8 1.2004E-3 1.1434E-3 1.1245E-3

9 7.6107E-4 7.1918E-4 7.8171E-4

13 1.1371E-4 9.3102E-5 5.3943E-5

Table 3 Numerical results with interface at x = 0.3, 0.5, 0.7 and grid size
1

20
×

1

20
, 1

70
×

1

70
, respectively. The errors are shown in the L∞-norm.

Grid size 1

20
×

1

20
Grid size 1

70
×

1

70

Iteration Γ at 0.3 Γ at 0.5 Γ at 0.7 Γ at 0.3 Γ at 0.5 Γ at 0.7

1 1.08E-1 1.47E-1 1.56E-1 1.08E-1 1.48E-1 1.56E-1

2 6.06E-2 6.12E-2 1.03E-1 6.10E-2 6.15E-2 1.03E-1

3 2.29E-2 4.81E-2 7.71E-2 2.32E-2 4.80E-2 7.72E-2

5 9.40E-3 9.50E-3 1.12E-2 9.14E-3 9.23E-3 1.15E-2

6 3.97E-3 4.26E-3 9.56E-3 3.67E-3 3.94E-3 9.86E-3

9 5.17E-4 2.12E-4 1.44E-3 4.31E-4 5.53E-4 1.25E-3

10 2.84E-4 4.19E-4 5.69E-4 2.71E-4 2.30E-4 3.55E-4

13 3.38E-4 3.86E-4 1.74E-4 1.97E-5 5.41E-5 4.73E-5

From Table 1 and Table 2 we see that the error reduction factor is approximately
equal to 1

2 , and is independent of the grid size. Thus the estimates (21) and their
discrete counterparts are correct.

Next, we take a(x) = 2+sin(π
2x). Let Γ = {0.3}× (0, 1), {0.5}× (0, 1), and {0.7}×

(0, 1), respectively. This time the second-order finite difference method is implemented
in each subdomain. The relaxation parameters are still chosen to be θ = δ = 1

2 . The
grid sizes are 1

20 × 1
20 and 1

70× 1
70 , respectively. The errors are evaluated in the L∞-norm

over the two subdomains at each iteration and are shown in Table 3.

From Tables 1, 2, and 3 we see that the convergence of our method is pretty fast and
independent of the grid size. Table 3 also tells us that different domain decompositions
yield different rates of convergence and different accuracies. This may suggest that
different domain decompositions at different times be necessary to deal with time-
dependent problems with moving local phenomena; an optimal domain decomposition
should be made at each time level according to the location of local phenomena. In
[13], both theoretical analysis and numerical experiments showed that it is the case.
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