- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Typical solution methods for solving mixed complementarity problems either generate feasible iterates but have to solve relatively complicated subproblems such as quadratic programs or linear complementarity problems, or (those methods) have relatively simple subproblems such as system of linear equations but possibly generate infeasible iterates. In this paper, we propose a new Newton-type method for solving monotone mixed complementarity problems, which ensures to generate feasible iterates, and only has to solve a system of well-conditioned linear equations with reduced dimension per iteration. Without any regularity assumption, we prove that the whole sequence of iterates converges to a solution of the problem (truly globally convergent). Furthermore, under suitable conditions, the local superlinear rate of convergence is also established.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8855.html} }Typical solution methods for solving mixed complementarity problems either generate feasible iterates but have to solve relatively complicated subproblems such as quadratic programs or linear complementarity problems, or (those methods) have relatively simple subproblems such as system of linear equations but possibly generate infeasible iterates. In this paper, we propose a new Newton-type method for solving monotone mixed complementarity problems, which ensures to generate feasible iterates, and only has to solve a system of well-conditioned linear equations with reduced dimension per iteration. Without any regularity assumption, we prove that the whole sequence of iterates converges to a solution of the problem (truly globally convergent). Furthermore, under suitable conditions, the local superlinear rate of convergence is also established.