- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-24-19,
author = {Zhang , Zhimin and Naga , Ahmed},
title = {Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example},
journal = {Journal of Computational Mathematics},
year = {2006},
volume = {24},
number = {1},
pages = {19--24},
abstract = {
A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8730.html} }
TY - JOUR
T1 - Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example
AU - Zhang , Zhimin
AU - Naga , Ahmed
JO - Journal of Computational Mathematics
VL - 1
SP - 19
EP - 24
PY - 2006
DA - 2006/02
SN - 24
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8730.html
KW - Finite element method, Superconvergence, Triangular mesh, Equilateral.
AB -
A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.
Zhang , Zhimin and Naga , Ahmed. (2006). Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example.
Journal of Computational Mathematics. 24 (1).
19-24.
doi:
Copy to clipboard