- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Uniformly a Posteriori Error Estimate for the Finite Element Method to a Model Parameter Dependent Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-26-716,
author = {},
title = {Uniformly a Posteriori Error Estimate for the Finite Element Method to a Model Parameter Dependent Problem},
journal = {Journal of Computational Mathematics},
year = {2008},
volume = {26},
number = {5},
pages = {716--727},
abstract = {
This paper proposes a reliable and efficient a posteriori error estimator for the finite element methods for the beam problem. It is proved that the error can be bounded by the computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh size nor on the thickness of the beam.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8654.html} }
TY - JOUR
T1 - Uniformly a Posteriori Error Estimate for the Finite Element Method to a Model Parameter Dependent Problem
JO - Journal of Computational Mathematics
VL - 5
SP - 716
EP - 727
PY - 2008
DA - 2008/10
SN - 26
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8654.html
KW - The beam problem, A posteriori error estimator, Finite element method.
AB -
This paper proposes a reliable and efficient a posteriori error estimator for the finite element methods for the beam problem. It is proved that the error can be bounded by the computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh size nor on the thickness of the beam.
Yiran Zhang & Jun Hu. (1970). Uniformly a Posteriori Error Estimate for the Finite Element Method to a Model Parameter Dependent Problem.
Journal of Computational Mathematics. 26 (5).
716-727.
doi:
Copy to clipboard