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Abstract

This paper proposes a reliable and efficient a posteriori error estimator for the finite

element methods for the beam problem. It is proved that the error can be bounded by the

computable error estimator from above and below up to multiplicative constants that do

neither depend on the meshsize nor on the thickness of the beam.
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1. Introduction

The beam model [1,2,12] considered here reads: Seek two functions ϕd(x) and ωd(x) defined

in the unit interval I = [0, 1] such that

−ϕ′′
d + d−2(ϕd − ω′

d) = 0, in (0, 1),

d−2(ϕd − ω′
d)

′ = g, in (0, 1),

ϕd(0) = ϕd(1) = ωd(0) = ωd(1) = 0.

(1.1)

Here and throughout the paper, the parameter d (0 < d < 1) denotes the thickness of the

beam. This model may be derived from the equations of plane linear elasticity by dimensional

reduction, which means that an undisplaced plane body occupying the region {0 ≤ x ≤ 1,− d
2 ≤

y ≤ d
2} be subject to a smooth vertical body force −d2g(x). Physically ωd represents the vertical

displacement of the midline, and ϕd the rotation of the cross section.

The corresponding variational formulation is as follows. Given g ∈ L2(I), find ϕd, ωd ∈

H1
0 (I) such that

(ϕ′
d, ψ

′) + d−2(ϕd − w′
d, ψ − υ′) = (g, υ), for all ψ, υ ∈ H1

0 (I), (1.2)

with the shear force

γd = d−2(ϕd − ω′
d). (1.3)

This paper is devoted to this beam problem which is difficult due to the small parameter

related to the thickness of the beam. For the reason of a highly desirable quality of a numerical

method, we hope to approximate the solution as accurately as possible for all values of this

parameter. For a priori error estimate analysis of the beam problem, Arnold [1,2] investigates

the robustness of two families of finite element methods with respect to the parameter d.

He points out that a standard linear finite element is found to be not robust at all which
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means the approximation errors do not converge to zero at the optimal rates uniformly in d.

Although the same method does converge uniformly with respect to the parameter when the

spaces of piecewise polynomials of order at least two are used, the approximation degenerates

as the thickness of the beam decreases, resulting in a reduced uniform order of convergence.

Comparatively, the mixed method he considers as the second method produces good results

and the errors converge uniformly with respect to the parameter for (almost) any choice of

finite element spaces for the original displacement without the degeneracy mentioned above.

All aforementioned papers are only concerning the a priori error analysis of the beam problem.

As for a posteriori error analysis of this problem, as far as we know, no work can be found in

the literature.

It is worth mentioning that recently there are some progress on the a posteriori error esti-

mates of the Reissner-Mindlin plate problem [7,8,11] and the unifying theory of a posteriori error

analysis of finite element methods [5–9,11]. In [11], Hu and Huang introduce a sparse mixed for-

mulation and establish the equivalence between the energy norms of errors and the dual norms

of the residuals. They propose some sufficient conditions and provide a unified framework

for the a posteriori error analysis of the finite element methods of the Reissner-Mindlin plate

problem. This paper follows these ideas and establishes some residual representation which

is closely related to the approximation errors, and presents a posteriori error estimates of the

beam problem. Then we analyze the Arnold’s discrete scheme of this problem [1,2] within this

framework, and propose a reliable and efficient residual-based a posteriori error estimator. The

related multiplicative constants do neither depend on the meshsize nor on the beam thickness.

The outline of the paper is as follows. In Section 2 we establish some equivalence between

the norms of errors and the dual norms of some residuals. In Section 3 we present Arnold’s

discrete scheme for the beam problem. The main results of this paper will be also stated. We

prove the results in Sections 4 and 5.

Throughout this paper, all function spaces will be formed with respect to the unit interval

I = [0, 1]. For functions f(x) and g(x) defined in [0, 1], we let (f, g) denote the inner productor∫ 1

0
f(x)g(x)dx. The associated L2−norm of the function is written as ‖f‖, while ‖f‖r denote

the norm in the Sobolev space Hr(I) : ‖f‖2
r = ‖f‖2 + ‖f

′

‖2 . . . + ‖f (r)‖2, where f (r) = drf
dxr

.

The space H1
0 (I) = {f ∈ H1(I)|f(0) = f(1) = 0}, on which the norm ‖f

′

‖ is equivalent to the

H1 norm. The space H−1(I) is dual to H1
0 (I) equipped with the norm

‖g‖−1 = sup
f∈H1

0

(f, g)

‖f ′‖
, ∀g ∈ H−1(I).

In this paper the generic constant C > 0 independent of the beam thickness d below may be

different at different occurrences. An inequality a � b replaces a ≤ Cb, a ≈ b abbreviates

a � b � a.

2. Residual-based a Posteriori Error Control

Follows the ideas of [3,7,11], let d−2 = 3
4 + β−2 and introduce an additional independent

variable

γ∗d = β−2(ϕd − ω′
d). (2.1)

We obtain a new established mixed version of the beam problem which is equivalent to the weak

formulation (1.2): Given g ∈ L2(I), find (ϕd, ωd, γ
∗
d) ∈ W × Θ × Q = H1

0 (I) ×H1
0 (I) × L2(I)
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such that

Bβ(ϕd, ωd, γ
∗
d ;ψ, υ, ζ) = (g, υ), ∀(ψ, υ, ζ) ∈ W × Θ ×Q, (2.2)

where the bilinear form Bβ(·, ·) is defined by

Bβ(ϕd, ωd, γ
∗
d ;ψ, υ, ζ) = a(ϕd, ωd;ψ, υ) + b(ψ, υ; γ∗d) + b(ϕd, ωd; ζ) − β2(ζd, γ

∗
d), (2.3)

with the bilinear forms

a(ϕd, ωd;ψ, υ) =

∫ 1

0

ϕ′
d(x)ψ

′(x)dx +
3

4

∫ 1

0

(
ϕd(x) − ω′

d(x))(ψ(x) − υ′(x)
)
dx, (2.4)

b(ψ, υ; γ∗d) =

∫ 1

0

(
ψ(x) − υ′(x)

)
γ∗d(x)dx. (2.5)

We define the norms on the spaces W × Θ as follows

|‖(ϕ, ω)‖| = a(ϕ, ω;ϕ, ω)
1
2 = {‖ϕ′‖2 +

3

4
‖ϕ− ω′‖2}

1
2 , for all ϕ, ω ∈ H1

0 (I), (2.6)

which is equivalent to the (H1
0 (I))2-norm ‖(ϕ, ω)‖1 = {‖ϕ′‖2 + ‖ω′‖2}

1
2 . In fact, by Poincare’s

inequality ‖ϕ‖ ≤ ‖ϕ′‖, and the triangle inequality ‖ω′‖ ≤ ‖ϕ− ω′‖ + ‖ϕ‖, we have

1

3
{‖ϕ′‖2 + ‖ω′‖2} ≤ |‖(ϕ, ω)‖|2 ≤

5

2
{‖ϕ′‖2 + ‖ω′‖2}, for all ϕ, ω ∈ H1

0 (I). (2.7)

Define the following parameter dependent norm for the space Q,

‖ζ‖Q = sup
(ψ,υ)∈(H1

0(I))2\{0}

(ψ − υ′, ζ)

|‖(ψ, υ)‖|
+ ‖βζ‖. (2.8)

It is in fact owing to this norm that we can obtain robust error estimates.

Remark 2.1. We set the space Q0 = {ζ|ζ ∈ H−1(I), ζ′ ∈ H−1(I)} with the norm ‖ζ‖Q,0 =

{‖ζ‖2
−1 + ‖ζ′‖2

−1}
1
2 . Then the norm ‖ζ‖Q,0 is equivalent to sup(ψ,υ)∈(H1

0 (I))2\{0}
(ψ−υ′,ζ)
|‖(ψ,υ)‖| . In

fact,

sup
(ψ,υ)∈(H1

0(I))2\{0}

(ψ − υ′, ζ)

|‖(ψ, υ)‖|

� sup
ψ∈H1

0 (I)\{0}

(ψ, ζ)

‖ψ′‖
+ sup
υ∈H1

0 (I)\{0}

(υ′, ζ)

‖υ′‖

= ‖ζ‖−1 + ‖ζ′‖−1.

On the other hand,

‖ζ‖−1 + ‖ζ′‖−1

= sup
ψ∈H1

0 (I)\{0}

(ψ, ζ)

‖ψ′‖
+ sup
υ∈H1

0 (I)\{0}

(υ, ζ′)

‖υ′‖

� sup
ψ∈H1

0 (I)\{0},

υ=0

(ψ − υ′, ζ)

|‖(ψ, υ)‖|
+ sup

υ∈H1
0 (I)\{0},

ψ=0

(ψ − υ′, ζ)

|‖(ψ, υ)‖|

� sup
(ψ,υ)∈(H1

0(I))2\{0}

(ψ − υ′, ζ)

|‖(ψ, υ)‖|
.

Since the bilinear form a(·, ·) defined by (2.4) is coercive on the whole space W × Θ, we can

conclude from Theorem 2 of [4] that
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Theorem 2.1. The bilinear form Bβ(·, ·) defined by (2.3) provides an isomorphism between

W × Θ ×Q and its dual space of W × Θ ×Q, namely,

sup
(ψ,υ;ζ)∈W×Θ×Q\{0}

Bβ(ϕ, ω, γ
∗;ψ, υ, ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

≈ |‖(ϕ, ω)‖| + ‖γ∗‖Q, for all (ϕ, ω, γ∗) ∈ W × Θ ×Q. (2.9)

Suppose (ϕ̃h, ω̃h, γ̃
∗
h) ∈W ×Θ×Q is some approximation to (ϕd, ωd, γ

∗
d) over some partition

∆ of I. Then we obtain the immediate corollary of Theorem 2.1.

Corollary 2.1. The error |‖(ϕd − ϕ̃h, ωd− ω̃h)‖|+ ‖γd − γ̃∗h‖Q is equivalent to the dual norms

of residuals:

|‖(ϕd − ϕ̃h, ωd − ω̃h)‖| + ‖γd − γ̃∗h‖Q

≈ sup
(ψ,υ,ζ)∈W×Θ×Q\{0}

Bβ(ϕd − ϕ̃h, ωd − ω̃h, γ
∗
d − γ̃∗h;ψ, υ, ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

≈ sup
(ψ,υ)∈W×Θ\{0}

ResΘ(ψ) + ResW (υ)

|‖(ψ, υ)‖|
+ sup
ζ∈Q\{0}

ResQ(ζ)

‖ζ‖Q
, (2.10)

with the residuals

ResW (υ) = (g, υ) +
3

4
(ϕ̃h − ω̃′

h, υ
′) + (υ′, γ̃∗h), (2.11)

ResΘ(ψ) = −(ϕ̃′
h, ψ

′) −
3

4
(ϕ̃h − ω̃′

h, ψ) − (ψ, γ̃∗h), (2.12)

ResQ(ζ) = −(ϕ̃h − ω̃′
h − β2γ̃∗h, ζ). (2.13)

Proof. We can immediately get the first “≈” in (2.10) from (2.9) in Theorem 2.1. In order

to get the second “≈”, we use the following two steps. First,

sup
(ψ,υ,ζ)∈W×Θ×Q\{0}

Bβ(ϕd − ϕ̃h, ωd − ω̃h, γ
∗
d − γ̃∗h;ψ, υ, ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

= sup
(ψ,υ,ζ)∈W×Θ×Q\{0}

ResΘ(ψ) +ResW (υ) +ResQ(ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

≤ sup
(ψ,υ,ζ)∈W×Θ×Q\{0}

ResΘ(ψ) +ResW (υ)

|‖(ψ, υ)‖| + ‖ζ‖Q
+ sup

(ψ,υ,ζ)∈W×Θ×Q\{0}

ResQ(ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

≤ sup
(ψ,υ)∈W×Θ\{0}

ResΘ(ψ) +ResW (υ)

|‖(ψ, υ)‖|
+ sup
ζ∈Q\{0}

ResQ(ζ)

‖ζ‖Q
.

Second,

sup
(ψ,υ)∈W×Θ\{0}

ResΘ(ψ) +ResW (υ)

|‖(ψ, υ)‖|
+ sup
ζ∈Q\{0}

ResQ(ζ)

‖ζ‖Q
,

= sup
(ψ,υ,ζ)∈W×Θ×Q\{0},

ζ=0

ResΘ(ψ) +ResW (υ) +ResQ(ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

+ sup
(ψ,υ,ζ)∈W×Θ×Q\{0},

(ψ,υ)=0

ResΘ(ψ) +ResW (υ) +ResQ(ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q

� sup
(ψ,υ,ζ)∈W×Θ×Q\{0}

ResΘ(ψ) +ResW (υ) +ResQ(ζ)

|‖(ψ, υ)‖| + ‖ζ‖Q
.

That ends the proof. �
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Remark 2.2. Here and throughout the paper, ω̃h, ϕ̃h, γ̃∗h are not necessarily the discrete func-

tions. However, the subindex h refers to the fact that they might be closely related to some

discrete functions ϕh, ωh, γ
∗
h and they are on our disposal. We will propose one simplest style

of them in Section 3 just as ω̃h = ωh, ϕ̃h = ϕh, γ̃
∗
h = γ∗h. Nevertheless, we have different choices

of these functions when we cope with different classes of methods which is one of the key ideas

of uniform a posteriori error analysis in [5,6,11].

3. Discrete Schemes of the Beam Problem and the Main Results

For the purpose of discretization we shall use finite element spaces defined with reference to

partitions of I. If △ = {x0, x0, · · · , xn} (0 = x0 < x1 < · · · < xn = 1) is a partition of I, let

Ii,△ = [xi−1, xi], hi,△ = |xi − xi−1|, h△ = max
i
hi,△. Without misapprehending, we often omit

the subscript △, just denote Ii,△ by Ii, hi,△ by hi, h△ by h. For r ≥ 0 and the partition △,

µr−1(△) denotes the spaces of functions on I which restrict to polynomial functions of degree

at most r on each subinterval [xi−1, xi] = Ii. The subscript −1 refers to the lack of continuity

constraint. For k ≥ 0, we let

µrk(△) = µr−1(△) ∩ Ck(I), µrk,0(△) = µrk(△) ∩H1
0 (I).

Let Wh, Θh, Qh be finite dimensional subspaces of W , Θ, Q with respect to a partition △

of I, and µ1
0,0(△) ⊂Wh, µ

1
0,0(△) ⊂ Θh. The discretization scheme for the beam problem reads:

Find (ϕh, ωh, γh) ∈Wh × Θh ×Qh such that

{
(ϕ′
h, ψ

′
h) + (γh,Rh(ψh − υh)) = (g, υh), ∀(ψh, υh) ∈ Wh × Θh,

(Rh(ϕh − ω′
h), ζh) − d2(γh, ζh) = 0, ∀ζh ∈ Qh,

(3.1)

with the discrete shear force

γh = d−2Rh(ϕh − ω′
h). (3.2)

Here the operator Rh is a reduction integration operator which can be regarded as a L2 projec-

tion onto the space Qh. Note that the discrete scheme is often not of the discrete counterpart

of the mix formulation introduced in Section 2. This discrete scheme has been analyzed by

Arnold in [1,2]. For (almost) any choice of finite element spaces for the original displacement

variables, it is proved that there is a finite element space in which to approximate the shear

stress variable such that the resulting mixed finite element method is stable with the constant

independent of the beam thickness. A special case of the scheme will be provided as an example

in this section.

We define

γ∗h = β−2Rh(ϕh − ω′
h). (3.3)

and note that γ∗d = β−2(ϕd − ω′
d) is defined by (2.1). We choose in (2.10)

ϕ̃h = ϕh, ω̃h = ωh, γ̃∗h = γ∗h. (3.4)

Then we will prove in Sections 4 and 5 the following conclusion.

Theorem 3.1. The error |‖(ϕd − ϕh, ωd −ωh)‖|+ ‖γ∗d − γ∗h‖Q can be bounded from above and

below by the estimator ηh in the sense that

|‖(ϕd − ϕh, ωd − ωh)‖| + ‖γ∗d − γ∗h‖Q ≈ ηh + osc(g), (3.5)
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where the estimator and the oscillation read, respectively,

η2
h =

∑

i

h2
i ‖g − γ′h‖

2
L2(Ii)

+
∑

i

h2
i ‖γh − ϕ′′

h‖
2
L2(Ii)

+ ‖(I − Rh)(ϕh − ω′
h)‖

2, (3.6)

osc2(g) =
∑

i

h2
i ‖g − gh‖

2
L2(Ii)

. (3.7)

Here gh is the L2 projection of g onto the space µ1
−1(△).

Example 3.1 ([2]) Consider a special case of the discrete scheme (3.1). Take Wh = Θh =

µr0,0(△), and Qh = µr−1
−1 (△). A reduced integration finite element is given as follows: Find

(ϕh, ωh) ∈Wh × Θh such that

(ϕ′
h, ψ

′
h) + d−2(ϕh − ω′

h, ψh − υ′h)△ = (g, υ), for all (ψh, υh) ∈Wh × Θh. (3.8)

The reduced integration (·, ·)△ here is defined as below.

(ζ, δ)△ =

n∑

i=1

(xi − xi−1)

r∑

j=1

ρj(ζδ)[xi−1 + (xi − xi−1)lj ], for all ζ, δ ∈ µr−1(△),

where 0 < l1 < · · · < lr < 1 and ρ1, ρ2, · · · , ρr denote respectively the points and weights of the

r point Gauss quadrature rule on [0,1].

Let γh = d−2Ph(ϕh−ω
′
h) with the L2 projection Ph onto the space µr−1

−1 (△) = Qh. We can

show that

(γh,Ph(ψh − υ′h)) = d−2(ϕh − ω′
h, ψh − υ′h)△. (3.9)

To show this claim it suffices to prove that

(Phζ, σ) = (ζ, σ)△, for ζ, σ ∈ µr−1(△), (3.10)

which means the scheme (3.8) is just the scheme of (3.1) with Rh = Ph. For ζ ∈ µr−1(△), let

I△ζ ∈ µr−1
−1 (△) interpolate ζ at the Gauss points. Then, for η ∈ µr−1

−1 (△),

(I△ζ, η) = (I△ζ, η)△ = (ζ, η)△ = (ζ, η), (3.11)

so I△ζ = Phζ. Hence, for σ ∈ µr−1(△),

(Phζ, σ) = (I△ζ, σ) = (I△ζ, σ)△ = (ζ, σ)△,

which proves (3.10). Consequently, the claim (3.9) is proved.

4. The Reliability of the Estimator

This section is devoted to prove that the dual norms of residual ResW (υ) + ResΘ(ψ) and

the residual ResQ(ζ) can be bounded by the estimator ηh.

Theorem 4.1. It holds that

sup
ψ,υ∈H1

0 (I)\{0}

ResW (υ) + ResΘ(ψ)

|‖(ψ, υ)‖|
� ηh,

where the estimator ηh is defined by (3.6).
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Proof. From the definitions of ResW (υ) and ResΘ(ψ) in (2.11) and (2.12), and the choice of

(3.4), we have, for all (ψ, υ) ∈W × Θ,

ResW (υ) + ResΘ(ψ)

= (g, υ) +
3

4
(ϕh − ω′

h, υ
′) + (υ′, β−2Rh(ϕh − ω′

h))

− (ϕ′
h, ψ

′) −
3

4
(ϕh − ω′

h, ψ) − (ψ, β−2Rh(ϕh − ω′
h)

= (g, υ − Jυ) + (γh, (υ − Jυ)′) − (γh, ψ − Jψ) − (ϕ′
h, (ψ − Jψ)′)

+ (g, Jυ) − (ϕ′
h, (Jψ)′) − (γh,RhJψ − Rh(Jυ)

′) + (γh −
3

4
(ϕh − ω′

h)

− β−2Rh(ϕh − ω′
h), ψ − υ′) + (γh, (Rh − I)(Jψ − (Jυ)′))

= I1 + I2 + I3 + I4 + I5, (4.1)

where J : H1
0 (I) −→ µ1

0,0(△) is the usual Lagrange interpolation operator:

Jψ(xi) = ψ(xi), xi ∈ △ = {x0, x1, · · · , xn} (0 = x0 < x1 < · · · < xn = 1). (4.2)

From this interpolation, one has

‖ψ − Jψ‖L2(Ii) � hi‖ψ
′‖L2(Ii), ψ ∈ H1

0 (I). (4.3)

Estimate for I1. Using an integration by parts and the Lagrange interpolation of (4.2) yields

I1 = (g, υ − Jυ) + (γh, (υ − Jυ)′)

= (g − γ′h, υ − Jυ) +
∑

i

{
γh(xi)(υ − Jυ)(xi) − γh(xi−1)(υ − Jυ)(xi−1)

}

�
∑

i

‖g − γ′h‖L2(Ii)‖υ − Jυ‖L2(Ii)

�
∑

i

hi‖g − γ′h‖L2(Ii)‖υ
′‖L2(Ii)

� {
∑

i

h2
i ‖g − γ′h‖

2
L2(Ii)

}
1
2 |‖(ψ, υ)‖|. (4.4)

Estimate for I2. Again using an integration by parts and the Lagrange interpolation of (4.2)

leads to

I2 = −(γh, ψ − Jψ) − (ϕ′
h, (ψ − Jψ)′)

= (−γh + ϕ′′
h, ψ − Jψ) −

∑

i

{
ϕ′
h(xi)(ψ − Jψ)(xi) − ϕ′

h(xi−1)(ψ − Jψ)(xi−1)
}

�
∑

i

hi‖ − γh + ϕ′′
h‖L2(Ii)‖ψ

′‖L2(Ii)

� {
∑

i

h2
i ‖ − γh + ϕ′′

h‖
2
L2(Ii)

}
1
2 |‖(ψ, υ)‖|. (4.5)

Estimate for I3. Note that

µ1
0,0(△) ⊂Wh and µ1

0,0(△) ⊂ Θh. (4.6)



Uniformly a Posteriori Error Estimate for FEM to a Model Parameter Dependent Problem 723

It follows from the discrete Problem (3.1) with υh = Jυ and ψh = Jψ that

I3 = (g, Jυ) − (ϕ′
h, (Jψ)′) − (γh,RhJψ − Rh(Jυ)

′) = 0. (4.7)

Estimate for I4. By γh = (3
4 + β−2)Rh(ϕh − ω′

h), we derive that

I4 =
(
γh −

3

4
(ϕh − ω′

h) − β−2Rh(ϕh − ω′
h), ψ − υ′

)

� ‖(I − Rh)(ϕh − w′
h)‖L2(I)|‖(ψ, υ)‖|. (4.8)

Estimate for I5. Since Rh is a L2 projection onto Qh, we have

I5 = (γh, (Rh − I)(Jψ − (Jυ)′)) = 0. (4.9)

Combining (4.1)-(4.9) ends the proof of the theorem. �

We now prove that the dual norm of the residual ResQ can be bounded by the estimator

ηh.

Theorem 4.2. It holds that

sup
ζ∈Q\{0}

ResQ(ζ)

‖ζ‖Q
� ηh.

Before proving Theorem 4.2, we need the following lemma.

Lemma 4.1. Given ζ ∈ L2(I), there exist c0 ∈ R and σ0 ∈ L2(I) such that ζ = c0 + σ0 and

sup
ψ,υ∈H1

0 (I)\{0}

(ψ − υ′, ζ)

|‖ψ, υ‖|
=

(
‖c0‖

2
−1 +

4

3
‖σ0‖

2

) 1
2

.

Proof. Given ζ ∈ L2(I), let (ϕ, ω) ∈W × Θ solves the following auxiliary problem:

(ϕ′, ψ′) +
3

4
(ϕ− ω′, ψ − υ′) = −(ζ, ψ − υ′), ∀(ψ, υ) ∈ V. (4.10)

The fact that a(·, ·) from (2.4) is coercive on the whole space W × Θ implies that the unique

existence of (ϕ, ω) ∈ W × Θ for the auxiliary problem (4.10). We choose (ψ, υ) = (ϕ, ω) in

(4.10). Consequently,

|‖(ϕ, ω)‖| =
−(ϕ− ω′, ζ)

|‖(ϕ, ω)‖|
≤ sup
ψ,υ∈H1

0 (I)\{0}

(ψ − υ′, ζ)

|‖(ψ, υ)‖|
. (4.11)

Setting ψ = 0 in (4.10), we have

(
3

4
(ϕ− ω′) + ζ, υ′) = 0, ∀υ ∈ H1

0 (I),

which implies that 3
4 (ϕ− ω′) + ζ is a constant on I. Let

c0 = ζ +
3

4
(ϕ − ω′), σ0 =

3

4
(ω′ − ϕ). (4.12)

Thus, ζ = c0 + σ0. Furthermore, (4.10) with υ = 0 shows (c0, ψ) = −(ϕ′, ψ′), which gives

‖c0‖−1 = sup
ψ∈∈H1

0 (I)\{0}

(c0, ψ)

‖ψ′‖
= sup

ψ∈∈H1
0 (I)\{0}

(ϕ′, ψ′)

‖ψ′‖
= ‖ϕ′‖. (4.13)
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Combining (4.11)-(4.13) yields
(
‖c0‖

2
−1 +

4

3
‖σ0‖

2
) 1

2

=
(
‖ϕ′‖2 +

3

4
‖ϕ− ω′‖2

) 1
2

= |‖(ϕ, ω)‖| ≤ sup
ψ,υ∈H1

0 (I)\{0}

(ψ − υ′, ζ)

|‖(ψ, υ)‖|
. (4.14)

On the other hand, with the decomposition ζ = c0 + σ0, we have for all (ψ, υ) ∈W × Θ,

(ψ − υ′, ζ) = (ψ − υ′, c0 + σ0)

= (ψ, c0) + (ψ − υ
′

, σ0)

≤ ‖ψ′‖‖c0‖−1 + ‖ψ − υ′‖‖σ0‖

≤ |‖(ψ, υ)‖|
(
‖c0‖

2
−1 +

4

3
‖σ0‖

2
) 1

2

,

which deduces

sup
ψ,υ∈H1

0 (I)\{0}

(ψ − υ′, ζ)

|‖ψ, υ‖|
≤

(
‖c0‖

2
−1 +

4

3
‖σ0‖

2
) 1

2

.

This completes the proof. �

Remark 4.1. Due to the equivalence of the norms in 1-dimensional space, we conclude that

‖c‖−1 ≈ ‖c‖ =
{∫ 1

0

c2dx
} 1

2

= |c|, for all c ∈ R.

Remark 4.2. The norm ‖·‖Q and the L2 norm ‖·‖ are equivalent, which can be easily verified

by using the definition (2.8) and Lemma 4.1. In fact |(ψ−υ′, ζ)| ≤ |‖(ψ, υ)‖|‖ζ‖ and 0 < β < 2,

so that

‖ζ‖Q = sup
ψ,υ∈H1

0(I)\{0}

(ψ − υ′, ζ)

|‖(ψ, υ)‖|
+ ‖βζ‖ � ‖ζ‖.

On the other hand, we conclude from Lemma 4.1 that

‖ζ‖ = sup
δ∈L2

(ζ, δ)

‖δ‖
= sup

δ∈L2

(c0 + σ0, δ)

‖δ‖

≤ sup
δ∈L2

(c0, δ)

‖δ‖
+ sup
δ∈L2

(σ0, δ)

‖δ‖

� ‖c0‖ + ‖σ0‖ � ‖c0‖−1 + ‖σ0‖ � ‖ζ‖Q.

Proof of Theorem 4.2. With the representation of ResQ in (2.13) and the choice in (3.4),

together with Remarks 4.1 and 4.2, we have, for all ζ ∈ Q,

sup
ζ∈Q\{0}

ResQ(ζ)

‖ζ‖Q
= sup
ζ∈Q\{0}

(ϕh − ω′
h − β2γ∗h, ζ)

‖ζ‖Q

≈ sup
ζ∈Q\{0},ζ=c0+σ0
c0∈R,σ0∈L2(I)

((I − Rh)(ϕh − ω′
h), c0 + σ0)

‖c0‖−1 + ‖σ0‖ + ‖β(c0 + σ0)‖

� ‖(I − Rh)(ϕh − ω′
h)‖,

which ends the proof. �

From Theorems 4.1 and 4.2, and the equivalence in (2.9), we obtain the following result.

Theorem 4.3. It holds that

|‖(ϕd − ϕh, ωd − ωh)‖| + ‖γ∗d − γ∗h‖Q � ηh.
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5. The Efficiency of the Estimator

This section demonstrates the efficiency of the estimator ηh.

Theorem 5.1. It holds that

ηh � |‖(ϕd − ϕh, ωd − ωh)‖| + ‖γd − γ∗h‖Q + osc(g),

where ηh and osc2(g) are defined as in (3.6) and (3.7) respectively.

Proof. For each subinterval Ii = [xi−1, xi], λ1,i and λ2,i are the barycentric co-ordinates on

this subinterval, and 4λ1,iλ2,i is the quadratic bubble function on Ii. Let

bIi(x) =

{
4λ1,iλ2,i, x ∈ Ii,

0, x ∈ [0, 1] \ Ii.
(5.1)

Obviously, bIi(x) ∈ H1
0 (I) with

supp bIi(x) = Ii, 0 ≤ bIi(x) ≤ max
0≤x≤1

bIi(x) = 1.

Firstly, by the definitions of γh and γd, we have

‖γh − γd‖

= ‖
3

4
(ϕd − ϕh) −

3

4
(ωd − ωh)

′ +
3

4
(I − Rh)(ϕh − ω′

h) + γ∗d − γ∗h‖L2(I)

� |‖(ϕd − ϕh, ωd − ωh)‖| + ‖γ∗h − γ∗d‖Q + ‖(I − Rh)(ϕh − ω′
h)‖. (5.2)

Secondly, we consider the efficiency of {
∑
i

h2
i ‖g−γ

′
h‖

2
L2(Ii)

}
1
2 . Set δIi = bIi(gh−γ

′
h) with gh(x)

the L2 projection of g(x) onto the space µ1
−1(△). Due to the equilibrium equation g = γ′d in

(1.1) and the equivalence of the norms ‖ · b
1
2

Ii
‖L2(Ii) and ‖ · ‖L2(Ii) on a polynomial space, we

have

hi‖gh − γ′h‖
2
L2(Ii)

� hi(gh − γ′h, δIi)

= hi(gh − g, δIi) + hi(g − γ′h, δIi)

= hi(gh − g, δIi) + hi(γ
′
d − γ′h, δIi)

= hi(gh − g, δIi) − hi(γd − γh, δ
′
Ii

)

� (hi‖gh − g‖L2(Ii) + ‖γd − γh‖L2(Ii))‖δIi‖L2(Ii).

The last term above is reduced with the inverse inequality on polynomial space. Thus,

hi‖gh − γ′h‖L2(Ii) � hi‖gh − g‖L2(Ii) + ‖γd − γh‖L2(Ii).

Therefore, ∑

i

h2
i ‖gh − γ′h‖

2
L2(Ii)

�
∑

i

h2
i ‖gh − g‖2

L2(Ii)
+ ‖γd − γh‖

2. (5.3)

Thirdly, we consider the efficiency of {
∑
i

h2
i ‖γh − ϕ′′

h‖
2
L2(Ii)

}
1
2 . Let ξIi = bIi(γh − ϕ′′

h). Using

the equivalence of the norms ‖ · b
1
2

Ii
‖L2(Ii) and ‖ · ‖L2(Ii) on a polynomial space over subinterval
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Ii and the inverse inequality on the polynomial space, and with the equation −ϕ′′
d + γd = 0 of

(1.1), we have

hi‖γh − ϕ′′
h‖

2
L2(Ii)

� hi(γh − ϕ′′
h, ξIi)

= hi(γh − γd, ξIi) + hi(ϕ
′′
d − ϕ′′

h, ξIi)

� hi‖γh − γd‖L2(Ii)‖ξIi‖L2(Ii) + hi‖ϕ
′
d − ϕ′

h‖L2(Ii)‖ξ
′
Ii
‖L2(Ii)

� (hi‖γh − γd‖L2(Ii) + ‖ϕ′
d − ϕ′

h‖L2(Ii))‖ξIi‖L2(Ii)

� (hi‖γh − γd‖L2(Ii) + ‖ϕ′
d − ϕ′

h‖L2(Ii))‖γh − ϕ′′
h‖L2(Ii).

Therefore, ∑

i

h2
i ‖γh − ϕ′′

h‖
2
L2(Ii)

� ‖γh − γd‖
2 + |‖(ϕd − ϕh, ωd − ωh)‖|

2. (5.4)

Fourthly, consider the efficiency of ‖(I − Rh)(ϕh − ω′
h)‖:

‖(I − Rh)(ϕh − ω′
h)‖

. ‖(ϕh − ϕd) − (ωh − ωd)
′‖ + ‖(ϕd − ω′

d) − Rh(ϕh − ω′
h)‖

� |‖(ϕh − ϕd, ωh − ωd)‖| + β2‖γ∗d − γ∗h‖

� |‖(ϕh − ϕd, ωh − ωd)‖| + ‖γ∗d − γ∗h‖Q, (5.5)

where we have used Remark 4.2 in the last inequality above. Finally, from (5.2) and (5.3)-(5.5),

we have

ηh � |‖(ϕd − ϕh, ω
∗
d − ωh)‖| + ‖γd − γ∗h‖Q + osc(g).

This ends the proof of the theorem. �

6. Conclusion

In this paper we extend the ideas of [3,7,11] to the a posteriori error analysis for the beam

problem. In particular, for the discretization scheme of [1,2] we present a reliable and efficient

local error estimator which is uniform with respect to the thickness of the beam. We believe

that the framework of the present paper can be extended for other schemes of the beam problem

(see Remark 2.2).
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