- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we review recent developments in the analysis of finite element methods for incompressible flow problems with local projection stabilization (LPS). These methods preserve the favourable stability and approximation properties of classical residual-based stabilization (RBS) techniques but avoid the strong coupling of velocity and pressure in the stabilization terms. LPS-methods belong to the class of symmetric stabilization techniques and may be characterized as variational multiscale methods. In this work we summarize the most important a priori estimates of this class of stabilization schemes developed in the past 6 years. We consider the Stokes equations, the Oseen linearization and the Navier-Stokes equations. Furthermore, we apply it to optimal control problems with linear(ized) flow problems, since the symmetry of the stabilization leads to the nice feature that the operations "discretize" and "optimize" commute.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8564.html} }In this paper we review recent developments in the analysis of finite element methods for incompressible flow problems with local projection stabilization (LPS). These methods preserve the favourable stability and approximation properties of classical residual-based stabilization (RBS) techniques but avoid the strong coupling of velocity and pressure in the stabilization terms. LPS-methods belong to the class of symmetric stabilization techniques and may be characterized as variational multiscale methods. In this work we summarize the most important a priori estimates of this class of stabilization schemes developed in the past 6 years. We consider the Stokes equations, the Oseen linearization and the Navier-Stokes equations. Furthermore, we apply it to optimal control problems with linear(ized) flow problems, since the symmetry of the stabilization leads to the nice feature that the operations "discretize" and "optimize" commute.