- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper is devoted to the mathematical analysis of a general recursive linearization algorithm for solving inverse medium problems with multi-frequency measurements. Under some reasonable assumptions, it is shown that the algorithm is convergent with error estimates. The work is motivated by our effort to analyze recent significant numerical results for solving inverse medium problems. Based on the uncertainty principle, the recursive linearization allows the nonlinear inverse problems to be reduced to a set of linear problems and be solved recursively in a proper order according to the measurements. As an application, the convergence of the recursive linearization algorithm [Chen, Inverse Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering problem.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1003-m0004}, url = {http://global-sci.org/intro/article_detail/jcm/8547.html} }This paper is devoted to the mathematical analysis of a general recursive linearization algorithm for solving inverse medium problems with multi-frequency measurements. Under some reasonable assumptions, it is shown that the algorithm is convergent with error estimates. The work is motivated by our effort to analyze recent significant numerical results for solving inverse medium problems. Based on the uncertainty principle, the recursive linearization allows the nonlinear inverse problems to be reduced to a set of linear problems and be solved recursively in a proper order according to the measurements. As an application, the convergence of the recursive linearization algorithm [Chen, Inverse Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering problem.