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Abstract

This paper is devoted to the mathematical analysis of a general recursive linearization

algorithm for solving inverse medium problems with multi-frequency measurements. Under

some reasonable assumptions, it is shown that the algorithm is convergent with error

estimates. The work is motivated by our effort to analyze recent significant numerical

results for solving inverse medium problems. Based on the uncertainty principle, the

recursive linearization allows the nonlinear inverse problems to be reduced to a set of

linear problems and be solved recursively in a proper order according to the measurements.

As an application, the convergence of the recursive linearization algorithm [Chen, Inverse

Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering

problem.
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1. Introduction

Motivated by significant scientific and industrial applications, the field of inverse problems
has undergone a tremendous growth in the last several decades. A variety of inverse problems,
including identification of PDE coefficients, reconstruction of initial data, estimation of source
functions, and detection of interfaces or boundary conditions, demand the solution of ill-posed
non-linear operator equations see, e.g., [12, 18]. Our focus of this paper is on the inverse
medium scattering problem, i.e., the reconstruction of the refractive index of an inhomogeneous
medium from measurements of the far field pattern of the scattered fields. The inverse medium
scattering problem arises naturally in diverse applications such as radar, sonar, geophysical
exploration, medical imaging, and nondestructive testing. There are two major difficulties
associated with the nonlinear inverse problem: the ill-posedness and the presence of many local
minima. A number of algorithms have been proposed for numerical solutions of this inverse
problem. Classical iterative optimization methods offer fast local convergence but often fail to
compute the global minimizers because of multiple local minima. Another main difficulty is
the ill-posedness, i.e., infinitesimal noise in the measured data may give rise to a large error in
the computed solution. It is well known that the ill-posedness of the inverse scattering problem
decreases as the frequency increases. However, at high frequencies, the nonlinear equation
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becomes extremely oscillatory and possesses many more local minima. A challenge for solving
the inverse problem is to develop solution methods that take advantages of the regularity of the
problem for high frequencies without being undermined by local minima.

To overcome the difficulties, stable and efficient regularized recursive linearization methods
are developed in [3, 9, 10] for solving the two-dimensional Helmholtz equation and the three-
dimensional Maxwell’s equations [4] in the case of full aperture data. We refer the reader
to [3, 5, 6] for limited aperture data cases. Roughly speaking, these methods use the Born
approximation at the lowest frequency kmin to obtain the initial guesses which are the low-
frequency modes of the medium. Updates are made by using the data at higher frequency
sequentially until a sufficiently high frequency kmax where the dominant modes of the medium
are essentially recovered.

In the case of fixed frequencies, a related continuation approach has been developed on the
spatial frequencies [3]. A recursive linearization approach has also been developed in [11] for
solving inverse obstacle problems. More recently, direct imaging techniques have been explored
to replace the weak scattering for generating the initial guess [2]. Although the numerical re-
sults are efficient and robust, the analysis of the computational methods is completely open.
Our main goal of this paper is to originate the convergence analysis of the general recursive
linearization algorithm for solving the inverse medium problem. Under some reasonable as-
sumptions, we establish the convergence of the algorithm along with an error estimate. Our
analysis is inspired by the underlying physics, especially the uncertainty principle.

The outline of the paper is as follows. A formulation of the nonlinear inverse scattering
problem is presented in Section 2. Section 3 is devoted to useful properties of the linearized
problem. In Section 4, we discuss the significance of the uncertainty principle in the study of
inverse problems. Through a singular value decomposition analysis, the uncertainty principle
may further be used to characterize the ill-posedness of the inverse problem. A reconstruction
method based on the uncertainty principle, recursive linearization, is introduced. We establish
the convergence of the recursive linearization approach and derive an error estimate in Section 5.
As an example, we apply the convergence result to the algorithm presented in [9] for solving an
inverse medium scattering problem in Section 6. Finally, some relevant discussions are provided
in the Appendix about the uncertainty principal and its close connection to the inverse medium
scattering problem.

2. Inverse Medium Scattering Problem

The scattering of time-harmonic electromagnetic waves by a cylindrical shaped inhomoge-
neous medium with refractive index 1 + q(x) is governed by the following differential equation

∆φ(x) + k2(1 + q(x))φ(x) = 0,inR2, (2.1)

where the real part of the complex valued function φ describes the space-dependent part of
a velocity potential in the case of acoustic waves or an electric/magnetic field in the case of
electromagnetic waves. The real number k > 0 is the wave number. Assume that the refractive
index q(x) + 1 is a positive real function in R2, the scatterer q(x) is compactly supported in
D(R) and belongs to C2

0 (D). Here D(R) denotes a ball in R2 centered at 0 with radius R. The
direct or forward scattering problem in this context is for a given incident wave φ0(x) satisfying
the Helmholtz equation ∆φ0 +k2φ0 = 0 in R2, to determine the scattered wave ψ(x) : R2 → C
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which solves

∆ψ + k2(1 + q(x))ψ = −k2q(x)φ0, in R2, (2.2)

along with the Sommerfeld radiation condition:

lim
r→+∞

√
r

(
∂ψ

∂r
− ikψ

)
= 0, r = |x|, (2.3)

uniformly in all directions. Note that the total field φ = ψ+φ0. It is well known that the direct
problem has a unique solution.

Let γ be the trace operator to the boundary ∂D of the domain D. By the trace theorem,
γ is a linear operator from Hs(D) onto Hs−1/2(∂D) for any s ≥ 1. We denote Hs(Ω) and
H̃s(Ω) the complex and real Sobolev spaces W s,2(Ω) on a domain Ω, respectively. For a
given incident field φ0 and a scatterer q, we define the map S(q, k) by S(q, k)φ0 = ψ. The
scattering map may be defined as M(q, k) = γS(q, k). Obviously M(q, k) is an operator-valued
function in L(L2(D),H3/2(∂D)). Its domain of definition is the closure of incident waves φ0 in
L2(D) = H0(D).

The inverse problem is to determine the medium function q from the given multi-frequency
near field measurements {M(q, kj), 1 ≤ j ≤ N} for incoming plane waves with all incident di-
rections (full aperture). The sequence {kj} belongs to the frequency band [kmin, kmax] produced
by some given measurement system.

3. Linearization of the Scattering Map

Since the scattering map M(q, k) is nonlinear, it is natural to study the linearization. By
far, most of the progress in solving the inverse problem has been obtained through linearization.
Our goal in this section is two folds: we first analyze the regularity, particularly the Fréchet
differentiability, of the scattering map and derive some useful properties of its Fréchet derivative
DM(q, k). We also analyze the relation between the injectivity property of the linearized
scattering map and the uniqueness of the inverse problem. The results obtained here will be
employed subsequently to study the connection between the regularity of the scattering map
and the uncertainty principle, and to verify the hypotheses for our convergence result.

In order to work on a bounded domain rather than the whole space, we introduce the
Dirichlet-to-Neumann map operator Λ(k) on the circle ∂D. The map is defined by Λ(k)f =
∂nuf , where u is the unique solution of the exterior Dirichlet problem for the Helmholtz equation
outside the domain D, satisfying a Dirichlet boundary condition uf = f on the circle ∂D and the
Sommerfeld radiation condition at the infinity. Here ∂nuf denotes the inward normal derivative
of uf on ∂D. It is known that Λ(k) is bounded from Hs(∂D) to Hs−1(∂D) for any s ≥ 1.

Remark 3.1. In the special case that D is a disk of radius R, the following explicit expression
holds:

Λ(k)f =
∑

j∈Z

( |j|
R
−

kH
(1)
|j−1|(kR)

H
(1)
|j| (kR)

)(
f,

eijθ

√
2πR

)
eijθ

√
2πR

,

where H
(1)
j (r) are the Hankel functions of the first kind and (r, θ) are the polar coordinates for

the plane.
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The restriction to D of the scattered field S(q, k)φ0 is the unique solution u ∈ H2(D) of the
equation (2.2) along with the boundary condition

Λ(k)γu =
∂u

∂n
on ∂D.

The converse is also true, since a solution of the above problem has a unique extension to R2

satisfying the original scattering problem.
For our analysis, it is crucial to introduce the notion of the singular value decomposition

for compact operators. Let H, H′ be Hilbert spaces, T be a compact operator from H to
H′, and T ∗ denote its adjoint operator. Then there exist a sequence of singular eigenvalues,
σ0 ≥ σ1 ≥ · · · , repeated according to their multiplicity and orthonormal sequences φj and ψj

such that Tφj = σjψj and T ∗ψj = σjφj , for all j ∈ N. For all φ in H, the following singular
value decomposition holds

φ =
∑

j≥0

(φ, φj)φj + P0φ ,

where P0 is the projection onto the kernel of T and Tφ =
∑

j≥0 σj(φ, φj)ψj . The system(
σj , φj , ψj

)
is called the singular system of T .

We next present a useful property of the scattering map.

Theorem 3.1. Let H̃2(D) be the real Sobolev space on the disc D. Assume that kmin and kmax

are positive numbers such that 0 < kmin < kmax. Then the scattering map M(q, k) depends
analytically on (q, k) in H̃2(D)× (kmin, kmax).

Proof. We first show that the restriction of the scattered field to the domain D is analytic
with respect to (q, k). To do so, we introduce the fundamental solution to the Helmholtz
equation:

Gk(x, y) = − i

4
H

(1)
0 (k|x− y|), x 6= y, x, y ∈ R2,

where H
(1)
0 (z) is the first kind Hankel function of order 0. For q in H̃2(D), define the maps:

Kf(x) := k2

∫

D

Gk(x, y)f(y)dy, (3.1)

Q(q)f(x) := q(x)f(x). (3.2)

The following regularity result is well known. We refer the reader to [12] (Thm. 8.2, pp. 208)
for a proof.

Proposition 3.1. Suppose that the function q is in H̃2(D). Then the maps Q and K are
bounded operators from L2(D) to L2(D) and from L2(D) to H2(D), respectively.

The function H
(1)
0 (z) is analytic in C/R−. Since kmin is strictly positive, the operator-valued

function KQ is analytic on (q, k) in H̃2(D)× (kmin, kmax). Denote I the identity operator from
L2(D) to itself. It follows from Proposition 3.1 that KQ is a compact operator-valued function
from L2(D) to itself. Therefore, by the Fredholm theory, I + KQ is analytic and invertible on
H̃2(D)× (kmin, kmax) except possibly at certain isolated points where it is not injective.

We next show that the operator I + KQ is injective for any (q, k) in H̃2(D)× (kmin, kmax).
Suppose that for some (q, k) in H̃2(D)× (kmin, kmax) and f in L2(D), we have

(I + KQ)f = 0.
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Consequently f(x) = −KQ(x)f in D. Proposition 3.1 implies that f(x) belongs to H2(D).
Using the properties of the map K we deduce that f(x) has a unique continuous extension to
R2. For simplicity, the extension is also denoted f . Consequently, we have

∆f + k2f = −k2q(x)f(x)

in the whole space R2 along with the radiation condition (2.3). The uniqueness of the forward
problem (2.2) implies that f is zero in R2.
We have proved that the operator I + KQ is injective for any q in H̃2(D). Consequently, the
operator-valued function (I + KQ)−1 is analytic in the whole space H̃2(D)× (kmin, kmax). It
is well known that the scattering problem is equivalent to the Lipmann-Schwinger equation:

ψ + KQψ = −KQφ0 .

Therefore, the scattered field in the domain D can be rewritten as

ψ = −(I + KQ)−1KQφ0.

By using the analyticity result proved above, we deduce that S(q, k) is analytic on (q, k) in
H̃2(D)× (kmin, kmax). Since the trace operator γ is a bounded linear operator independent of
q and k, the scattering map M(q, k) = γS(q, k) maintains the same regularity as the operator
S(q, k), which completes the proof of Theorem 3.1.

To introduce the linearization, we consider the following problem

∆v + k2(1 + q(x))v = −k2δq(x)(ψ + φ0), in R2, (3.3)

lim
r→+∞

√
r

(
∂v

∂r
− ikv

)
= 0, r = |x|.

Define the operator DS by
v = DS(q)(δq, φ0) .

Then, the linearized scattering map may be formally defined as

DM(q, k) = γDS(q) .

More specifically, it is easily verified that the Fréchet derivative of the scattering map takes
the following form

DM(q, k)p = −γ(I + KQ)−1KQ(p)(I + KQ)−1φ0,

where Q(p) is the multiplication operator associated with the function p.
In the rest of this section, we study further properties of the linearized scattering map

DM(q, k), which plays an important role in the following sections.
We begin with a technical result whose proof is given in [12] for the three-dimensional case.

The two-dimensional case could be proved similarly.

Lemma 3.1. Let B be an open ball such that D ⊂ B. Then the set of total fields

{(I + S(q, k))e−ikx.d, d ∈ S1}
is complete in the closure of

Zk :=
{

w ∈ C2(B) : ∆w + k2(1 + q(x))w = 0, in B

}

with respect to the norm L2(D). Here S1 denotes the unit circle.
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Theorem 3.2. Let q ∈ C2
0 (D̄). Then there exists an open and dense set Iq in R such that

DM(q, k) is injective for any k ∈ Iq. Moreover R/Iq is a countable set. In particular 0 ∈ Iq.

Proof. Multiplying the equation (3.3) by w ∈ Zk and integrating by parts, we obtain by
Green’s theorem and using the fact that S(q, k)e−ikx.d solves the Helmholtz equation outside
the disc D that

∫

D

p(x)w(x)(I + S(q, k))e−ikx.ddx

=− 1
k2

∫

∂D

wΛ(k)(DM(q, k)p)e−ikx.d − ∂nw(DM(q, k)p)e−ikx.ddsx .

The above equality implies that the formal linearized map DM(q, k) is injective at k if the
product of solutions w ∈ Zk and (I + S(q, k))e−ikx.d, d ∈ S1 is complete in L2(D). Therefore,
from Lemma 3.1, we have DM(q, k) is injective at k if and only if the set Vk = {uw : u,w ∈ Zk}
is complete in L2(D).

The proof may be completed by using an earlier result of Sun and Uhlmann [19]: there
exists an open set Iq in R where Vk is complete in L2(D). The complement of the set Iq is
countable. Furthermore, 0 belongs to the set Iq.

Remark 3.2. The above proof exhibits the important connection between the uniqueness of
the inverse problem at fixed frequency and the injectivity of the linearized scattering map.
More recently, in [14], the uniqueness of the inverse problem has been established for a fixed
frequency outside a countable set.

4. Uncertainty Principle and Recursive Linearization

In an abstract setting, the inverse problem may be formulated as

M(q, kj) = Data(kj), j = 0, · · · , N, kmin ≤ kj ≤ kmax, (4.1)

where kmin is small enough to be in the regime of the Born approximation and kmax is the
highest frequency. The operator-valued function M(q, k) represents the totality of information
encoded in the full aperture measurements taken outside the medium: the acquisition of each
scattered field ψ outside D(R) corresponding to every possible incident field φ0. However, as
discussed in the Appendix, information on evanescent waves is often not available in practical
situations. Thus, it is essential to reformulate the inverse problem by taking into account the
uncertainty principle.

Due to the regularity of the scattered field ψ in the whole space R2, the operator M(q, k) is
compact from its domain of definition in L2(D) into L2(∂D). Hence it has a singular eigenvalue
decomposition

M(q, k) =
∞∑

l=0

σlφl ⊗ ψl,

where {σl} is a decreasing sequence of positive numbers, {φl} and {ψl} are orthonormal se-
quences in the closed set of plane waves in L2(D) and L2(∂D), respectively. Recall the standard
notation: (φl ⊗ ψl)φ = (φ, φl)ψl.
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To illustrate the ill-posedness of the inverse problem (4.1), we examine closely the singular
values of the scattering map in the special case where q(x) = q0χD0 . Here the number q0 > −1
and χD0 is the characteristic function of the disc D(R0). Since in practice the compact support
of the medium is unknown and the data is measured far from it, we assume that R0 < R.
Denote ψ = S(q0χD0 , k)φ0 where φ0 is an incoming plane wave. It follows that the total field
inside D0 can be expressed in the polar coordinates as

ψ(r, θ) + φ0(r, θ) =
+∞∑

m=−∞
cmJm(kr

√
1 + q0)eimθ.

Since φ0 and ψ are solutions of the Helmholtz equation inside and outside of D0, respectively,
we have

φ0(r, θ) =
∞∑

m=−∞
αmJm(kr)eimθ, for r ≤ R0

and

ψ(r, θ) =
∞∑

m=−∞
ξmHm(kr)eimθ, for R0 ≤ r,

where {ξm} and {αm} are complex sequences. Here, Hm is the Hankel function of the first kind
of order m, Jm is the Bessel function of the first kind of order m.

By using the continuity of the scattered wave and its normal derivative on the boundary
∂D0, we deduce that the singular values of M(q0χD0 , k) are

σm =
∣∣∣∣

Jm(kR0

√
1 + q0)J ′m(kR0)−

√
1 + q0J

′
m(kR0

√
1 + q0)Jm(kR0)√

1 + q0J ′m(kR0

√
1 + q0)Hm(kR0)− Jm(kR0

√
1 + q0)H ′

m(kR0)

√
RHm(kR)

(
∫ R0

0

J2
m(kr)rdr)1/2

∣∣∣∣ .

Therefore, the asymptotic analysis of the Bessel and Hankel functions shows the extremely
rapid decay

σm = O
(

k2
√

m + 1

m(m + 1)− k2R2
0

4

(
R0

R

)m
)

,

as m goes to infinity ( À kR), which indicates the severe ill-posedness of the inverse problem.
Note that for a large frequency k, the ill-posedness becomes less severe. In fact, the improvement
in the magnitude of the singular eigenvalues by taking larger frequencies is much better than
what it appears in the above expression since the asymptotic formula is calculated for large m

but fixed kR. By taking into account the far field measurements, for R À R0, we obtain

σm = O
(

k
3
2
√

m(m + 1)

m(m + 1)− k2R2
0

4

(
kR0e

2m

)m
)

.

The asymptotic result above represents the behavior of singular eigenvalues σl(q, k), l ∈ N
with respect to the parameters l and k for more general medium, i.e., they decrease exponen-
tially for large l and increase with respect to k for fixed q and l.

Recall from the previous section that

M(q, k) = γKQ(I + KQ)−1 .

It follows from the Courant-Fischer characterization of singular values [17] that

σl(M(q, k)) ≤ σl(γKQ(χD0))‖Q‖L∞‖(I + KQ)−1‖ ,
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where D(R0) is the smallest disc containing the compact support of q(x). We deduce from
Graf’s addition formula a series representation of the Green function

Gk(x, y) = − i

4

+∞∑
m=−∞

Jm(krx)Hm(kry)eim(θx−θy),

where (rx, θx) and (ry, θy) are the polar coordinates of respectively any vectors x and y satisfying
rx < ry. A direct calculation yields

σl(γKQ(χD0)) =
k2

4
|Hl(kR)|

( ∫ R0

0

J2
l (kr)rdr

)1/2

.

Therefore, for R À R0, we have

σl(γKQ(χD0)) = O
(

R0

√
k

4
√

l(l + 1)

(
kR0e

2l

)l
)

.

Furthermore, since the operator I + QK is a smooth compact perturbation of the identity
operator, we conjecture that the variation of the norm ||(I + QK)−1|| on [kmin, kmax] has little
influence on the exponential behavior of the singular eigenvalues. An on-going project of the
authors is to derive this and related frequency stability estimates for the inverse problem. The
results will be reported elsewhere.

From a physical point of view, the above singular value decomposition may be understood as
follows: a unitary incident wave propagating through the medium in the direction φl generates
a scattered wave propagating in the direction ψl with magnitude σl. For large l, the scattered
wave amplitudes resulting from the diffraction in the directions φl are infinitesimals hence
undetectable by conventional devices.

We can interpret the uncertainty principle rigorously by assuming a fixed limit (for the
observer) β > 0 of the accuracy of our measurement system, such that the waves propagating
in the directions ψl with σl ≤ β can not be observed and hence are lost. Consequently, the
available data satisfies the following equations

∑

σl≥β

σlφl ⊗ ψl = Data(k) . (4.2)

Since for a fixed q, the singular eigenvalues k → σl are increasing, one can detect more scattered
waves for large k and hence collect more information about the scatterer.

Recursive linearization approach. Based on the discussion on the uncertainty principle
in the Appendix, the observable part of the medium q̃(k) is a natural solution to the new
problem (4.2). For its reconstruction, we present here a recursive linearization algorithm:

• The algorithm requires multi-frequency data and a (systematic) way to generate a good
initial guess at the lowest frequency k, kmin. For examples, the initial guess is derived
from the Born approximation at the lowest frequency in [4, 7, 9] because of the weak
scattering.

• The approximation is then used to linearize the inverse problem at the next higher fre-
quency kmin + δk to produce a better approximation which contains more modes of the
scatterer. The process continues recursively until a sufficiently high wavenumber kmax,
where the dominant modes of the scatterer are essentially recovered.
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5. Convergence Analysis

We study the convergence properties of the recursive linearization algorithm. More generally,
we consider a general nonlinear ill-posed inverse problems which can be formulated as the
abstract equation:

F (q, k) = 0, (5.1)

where F : S × [kmin, kmax] → Y is a nonlinear operator indexed by k ∈ [kmin, kmax]. S, Y are
Hilbert spaces with inner products (., .)S , (., .)Y and norms ‖.‖S , ||.||Y , respectively. Assume
throughout that Y has a finite dimension (Remark 5.1). We also restrict the attention only
to the attainable case, i.e., the nonlinear equation above is assumed to have a (not necessarily
unique) solution, q̃(k) on [kmin, kmax].

The inverse problem is concerned with the reconstruction of the exact solution q̃(kmax) for
a given approximation of q̃(kmin).

Remark 5.1. The problem above may be viewed as a generalization of our inverse problem
introduced in the previous section. By taking into account the uncertainty principal (the
Appendix), the collected multi-frequency data may be considered as a small perturbation of a
truncated matrix which contains information on the principal propagating scattered waves. As
is shown in the previous section, the inverse problem can be transformed into:

L∑

l=1

σlφl ⊗ ψl −Data(k) = 0, k ∈ [kmin, kmax],

with the integer L = max{l : σl(q, k) > β, k ∈ [kmin, kmax]}. We follow [15] to define the
operators

rL : H3/2(∂D) → RL by rLψ =
(
(ψ, ψl)H3/2

)
l=1,··· ,L

and
r∗L : L2(∂D) → RL by r∗Lφ =

(
(φ, φl)L2

)
l=1,··· ,L.

Let (Fl,m)l,m=1,··· ,L be the coefficients of the matrix

F (q, k) = rL(M(q, k)−Data(k))r∗L.

Let F (q, k) = (Fl,m)l,m=1,··· ,L. Because of the Born approximation for sufficiently small kmin,
q̃(kmin) represents the Fourier modes of the real medium less than 2kmin. In this case, the
data provides a good approximation. The maps rL and r∗L depend obviously on the medium q

and the frequency k and could be derived from the singular value decomposition of the data.
It follows that these maps have the same regularity as the scattering map. In practice, as we
will show in the next section, rL and r∗L are linear operators that map the diffracted waves and
incident waves respectively into a known and fixed basis. That is, the matrix (Fl,m)l,m=1,··· ,L
may be substituted by a truncated square matrix including the most important propagating
waves. This finite dimension approximation is being used extensively for solving linear ill-posed
problems [15]. To get a good approximation of the scattering map, we need to increase the finite
rank of the truncated matrix, which may be accomplished by taking a larger band of frequency
(to increase kmax). The higher the frequency kmax is, the more accurate is the approximation.

We next return to the general problem. The following general hypotheses are needed for
our convergence analysis
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H1 : F (q, k) is twice Fréchet differentiable with respect to (q, k).

H2 : q̃(k) is twice continuously differentiable.

H3 : There is a positive constant ρ, such that for all k in [kmin, kmax] and q ∈ Bρ(q̃(k))
(a ball of radius ρ centered at q̃(k))

∂qF (q̃(k), k)(q − q̃(k)) = 0 =⇒ F (q, k) = F (q̃(k), k) = 0.

In the following, we discuss the appropriateness of the hypotheses in the context of the
inverse medium scattering problem. The hypothesis H1 is obviously satisfied for our problem
since the scattering map is analytic on (q, k) according to Theorem 3.1. The assumption
H2 is valid for k small (the Born approximation). Due to the uncertainty principle, many
scatterers could produce the same data. The regularity of the scattering map as a function
of the frequency allows us to choose a smooth function, q̃(k). Therefore, the hypothesis H2
is also justified. Finally, the hypothesis H3 states that for a fixed frequency k, the first order
perturbation of the function F (q, k) with respect to the medium q close to the observable part
is less sensitive to the high frequency of the medium or conversely a small perturbation of the
high frequency of the medium leaves the observable part q̃(k) unchanged at the first order of
the perturbation. The last hypothesis represents the translation of the uncertainty principle
into the more general problem proposed in this section.

In order to solve the nonlinear problem (5.1), we use the classical Newton method. Since the
Fréchet derivatives are singular (not injective) a regularization method is needed to stabilize the
computation procedure. Tikhonov regularization is well-known and easy to implement. The
regularized Newton method consists in solving the minimization problem

min
{
‖Ajδqj + F (qj , kj+1)‖Y + α‖δq‖S

}
(5.2)

over δq ∈ S in each iteration to compute qj+1 = qj + δqj . Here Aj is the Fréchet derivative
∂qF (qj , kj+1), A∗j is its adjoint, α is a small positive regularization parameter and

kj = kmin +
j

N
(kmax − kmin), j = 0, . . . , N

is the discretization grid of [kmin, kmax]. It is known that (5.2) has a unique solution:

qj+1 = qj − (αI + A∗jAj)−1A∗jF (qj , kj+1). (5.3)

Essentially, this is the general form of the recursive linearization algorithm in Section 4. The
rest of this section is devoted to the convergence study of the algorithm.

We are ready to present the main convergence result.

Theorem 5.1. Assume that F (q, k) verifies all the hypotheses above and that q̃(kj) is a qj-
minimum norm solution, i.e., among all solutions of F (q, kj) = 0, q̃(kj) minimizes the distance
to qj for 0 ≤ j ≤ N . Then there exist positive constants α, c0, and N0, such that, if

‖q̃(kmin)− q0‖S ≤ c0α,

then the estimate

‖q̃(kmax)− qN‖S ≤ C

N
√

α
(5.4)
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holds for all N ≥ N0. Here the constant C is independent of N , α.

Before proving the theorem, the following remarks on the usefulness of the theorem are in
order.

Remark 5.2. According to the theorem, if the error of the initial guess at low frequency
kmin is of the order of α (small), the algorithm converges linearly. The constant C depends
only on the nonlinear function F . For the inverse medium scattering problem, this may be
interpreted as follows: if a good estimate of the first few Fourier modes of the medium at
kmin is available, then the algorithm will provide a good approximation of the observable part
q̃(kmax) of the medium at a computational cost C/

√
α. For this convergence result, there is

no need to let α go to zero as for most regularized ill-posed problems. In fact, the parameter
α represents the computational cost for determining a good approximation of the observable
part q̃(kmax) of the medium. In addition, it will be shown in the proof of the theorem that
α is equivalent to a fraction of the infinimum σ? of the smallest singular eigenvalue σlnk

(k)
over [kmin, kmax]. Based on the uncertainty principle, for larger frequency kmax, one can detect
more modes of the medium, which implies that the corresponding number L introduced in
Remark 5.1 increases. In this case, α acts like σ? to approach zero and provoke the increase
of the computation cost. Without consideration of the uncertainty principle and at a fixed
frequency, the unique way to increase the resolution will be to increase the number L (the finite
dimension approximation [15]) and hence it is important to find a balance between N and α

(the Morozov principle). It should be pointed out that by increasing L, the convergence of our
algorithm is slowed considerably due to the severe ill-posedness (the singular eigenvalues are
decaying exponentially with respect to L). In fact, it has been proved in dimension three that
this convergence is at most logarithmic [16].

Remark 5.3. Note that Equation (5.1) may be solved by other regularization methods, such
as the Landweber iteration, the Levenberg-Marquart algorithm, and regularized Gauss-Newton
methods. As a minor point, it should be pointed out that the result holds in the trivial case
when F = 0.

In order to prove the theorem, the following two technical results are useful.

Lemma 5.1. Assume that A is a compact linear operator from S to Y . Then, the following
inequalities hold

(a) ‖(αI + A∗A)−1A∗‖L(Y,S) ≤
1

2
√

α
,

(b) ‖(αI + A∗A)−1A∗A‖L(S,S) ≤ 1,

(c) ‖(αI + A∗A)−1‖L(S,S) ≤
1
α

,

Proof. Denote by {σl}0≤l the singular eigenvalues of the operator A. Then, we have

‖(αI + A∗A)−1A∗‖L(Y,S) = max
σl

|σl|
α + σ2

l

≤ 1
2
√

α
,

‖(αI + A∗A)−1A∗A‖L(S,S) = max
σl

σ2
l

α + σ2
l

≤ 1,

‖(αI + A∗A)−1‖L(S,S) = max
σl

1
α + σ2

l

≤ 1
α

.
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This completes the proof of the lemma 2

Lemma 5.2. Assume that F (q, k) satisfies the hypotheses H1 and H2 and that q̃(k) is the
unique q?-minimum-norm solution of F (q, k) = 0 in Bρ(q̃(k)), i.e.,

‖q̃(k)− q?‖S = min
{
‖q − q?‖S : q ∈ Bρ(q̃(k)), F (q, k) = 0

}
.

Then

q̃(k)− q? ∈ N(∂qF (q̃(k), k))⊥.

Proof. Suppose that q̃(k) is a q?-minimum-norm solution and q̃(k) − q ∈ N(∂qF (q̃(k), k)).
There exists η > 0 such that q̃(k)+ s(q− q̃(k)) ∈ Bρ(q̃(k)) for all |s| ≤ η. The third assumption
of the lemma implies that

F (q̃(k) + s(q − q̃(k)), k) = 0.

Since q̃(k) is a q?-minimum-norm, we have

‖q̃(k) + s(q − q̃(k))− q?‖2S
=s2‖q − q̃(k)‖2S + 2s(q − q̃(k), q̃(k)− q?) + ‖q̃(k)− q?‖2S
≥‖q̃(k)− q?‖2S ,

and therefore

s2‖q − q̃(k)‖2S + 2s(q − q̃(k), q̃(k)− q?) ≥ 0, for all |s| ≤ η. (5.5)

We next show that the inequality (5.5) is true only if (q − q̃(k), q̃(k)− q?) = 0. Let

a := ‖q − q̃(k)‖S , b := (q − q̃(k), q̃(k)− q?).

If a = 0, the inequality (5.5) directly implies that b = 0. Now, if a 6= 0 the inequality can be
rewritten as

(
as +

b

a

)2

−
(

b

a

)2

≥ 0, for all |s| ≤ η.

This is possible only when b = 0. Consequently,

(q − q̃(k), q̃(k)− q?) = 0 ,

which is equivalent to q̃(k)− q? ∈ N(∂qF (q̃(k), k))⊥ since q is arbitrary. 2

We are now ready to prove Theorem 5.1.
Proof. (Theorem 5.1.) Denote by Bρ(q̃(k)) the ball in S centered at q̃(k) with radius ρ.

From the regularity of the function F (q, k), the estimates

‖∂qqF (q, k)‖L(S×S,Y ) ≤ d2, ‖∂kkF (q, k)‖Y ≤ d3, ‖∂qkF (q, k)‖L(S,Y ) ≤ d6 (5.6)

hold for all k ∈ [kmin, kmax] and q ∈ Bρ(q̃(k)) with ρ small enough. Similarly, it follows from
the properties of the solution q̃(k) that for all k ∈ [kmin, kmax]

‖q̃′′(k)‖S ≤ d1, ‖∂qF (q̃(k), k)‖L(S,Y ) ≤ d4, ‖∂kF (q̃(k), k)‖Y ≤ d5. (5.7)
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Here the constants di, i = 1, · · · , 6 are positive constants independent of k.
Next, we use Lemma 5.1 to prove the existence of positives constants d0 and α0, such that

the estimate

‖q̃′(kj) + (αI + Ã∗j Ãj)−1Ã∗j∂kF (q̃(kj), kj)‖S < d0, 0 ≤ j ≤ N, (5.8)

holds for all α ∈ (0, α0), where Ãj = ∂qF (q̃(kj), kj). Since q̃(k) is one of the solutions of
the problem, the equation F (q̃(k), k) = 0 holds over the interval [kmin, kmax]. By taking into
account the smoothness assumptions H1 and H2, one can differentiate the latter equation with
respect to k, to get:

∂qF (q̃(k), k)q̃′(k) = −∂kF (q̃(k), k), k ∈ [kmin, kmax] .

Therefore, substituting ∂kF (q̃(kj), kj) by −∂qF (q̃(kj), k)q̃′(kj) in the estimated norm gives:

‖q̃′(kj) + (αI + Ã∗j Ãj)−1Ã∗j∂kF (q̃(kj), kj)‖S
=‖α(αI + Ã∗j Ãj)−1q̃′(kj)‖S , 0 ≤ j ≤ N.

Using c) in Lemma 5.1, we obtain

‖q̃′(kj) + (αI + Ã∗j Ãj)−1Ã∗j∂kF (q̃(kj), kj)‖S ≤ ‖q̃′(kj)‖S , 0 ≤ j ≤ N.

From the regularity of the function ‖q̃′(k)‖S , there exists a constant d0 such that ‖q̃′(k)‖S < d0

for all k in [kmin, kmax], which implies the estimate (5.8).
For convenience, we introduce the following notations:

Rj,α = (αI + A∗jAj)−1A∗j , R̃j,α = (αI + Ã∗j Ãj)−1Ã∗j .

Denote by ej = q̃(kj)− qj the jth iteration error in the approximation.
From (5.3), we have for j = 0, . . . , N − 1:

ej+1 = ej+
(

q̃′(kj) + R̃j,α∂kF (q̃(kj), kj)
)

1
N

+ q̃(kj+1)− q̃(kj)− q̃′(kj)
1
N

+Rj,αF (qj , kj) + Rj,α

(
F (qj , kj+1)− F (qj , kj)− ∂kF (qj , kj)

1
N

)

+
(

Rj,α∂kF (qj , kj)− R̃j,α∂kF (q̃(kj), kj)
)

1
N

,

and consequently

‖ej+1‖S ≤ ‖ej + Rj,αF (qj , kj)‖S + ‖q̃′(kj) + R̃j,α∂kF (q̃(kj), kj)‖S 1
N

+‖q̃(kj+1)− q̃(kj)− q̃′(kj)
1
N
‖S +

∥∥∥∥Rj,α

(
F (qj , kj+1)− F (qj , kj)− ∂kF (qj , kj)

1
N

)∥∥∥∥
S

+‖Rj,α∂kF (qj , kj)− R̃j,α∂kF (q̃(kj), kj)‖S 1
N

.

Note that the first and last terms on the right-hand side represent the linearization with respect
to q and k, respectively.

For simplicity, assume that qj ∈ Bρ(q̃(kj)) for 0 ≤ j ≤ N and small ρ > 0. This assumption
will be verified later in the proof.
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We focus on the last term on the right hand side of the estimate for ||ej+1||S .
∥∥∥∥Rj,α∂kF (qj , kj)− R̃j,α∂kF (q̃(kj), kj)

∥∥∥∥
S

≤‖Rj,α − R̃j,α‖L(Y,S)‖∂kF (q̃(kj), kj)‖S + ‖Rj,α‖L(Y,S)

∥∥∥∥∂kF (qj , kj)− ∂kF (q̃(kj), kj)
∥∥∥∥
S
.

From Lemma 5.1 and the estimates (5.6) and (5.7), we have

‖Rj,α − R̃j,α‖L(Y,S) ≤
9
4α
‖Aj − Ãj‖L(S,Y ) ≤

9d2

4α
‖ej‖S

and thus ∥∥∥∥Rj,α∂kF (qj , kj)− R̃j,α∂kF (q̃(kj), kj)
∥∥∥∥
S
≤

(
9d2d5

4α
+

d6

2
√

α

)
‖ej‖S .

Once again by using the estimates in Lemma 5.1, the estimates (5.6) − (5.8), and the result
above, we obtain

‖ej+1‖S ≤ ‖ej + Rj,αF (qj , kj)‖S +
d0

N
+

d1

N2
+

d3

2
√

αN2
+

1
N

(
9d2d5

4α
+

d6

2
√

α

)
‖ej‖S . (5.9)

Note that the term ‖ej + Rj,αF (qj , kj)‖S is in fact the error of the first Newton iteration for
solving the nonlinear problem F (q, kj) = 0. We next examine this term. Clearly

ej + Rj,αF (qj , kj) = ej − R̃j,αÃjej + (R̃j,α −Rj,α)Ãjej + Rj,α(F (qj , kj) + Ãjej).

Hence,

‖ej + Rj,αF (qj , kj)‖S
≤‖ej − R̃j,αÃjej‖S + ‖(R̃j,α −Rj,α)Ãjej‖S + ‖Rj,α(F (qj , kj) + Ãjej)‖S .

Lemma 5.1 and the estimates (5.6) and (5.7) provide

‖ej + Rj,αF (qj , kj)‖S ≤ ‖ej − R̃j,αÃjej‖S +
(

9d2d4

4α
+

d2

2
√

α

)
‖ej‖2S . (5.10)

To estimate the first term on the right hand side of (5.10), Lemma 5.2 is needed. Let 0,
σl(k), l = 1, . . . , nk be the singular eigenvalues of the bounded operator ∂qF (q̃(k), k). Assume
that q̃(kj) is the unique qj-minimum-norm solution of F (q, kj) = 0 in Bρ(q̃(kj)). It follows from
Lemma 5.2 and Hypothesis H3 that

‖ej − R̃j,αÃjej‖S ≤ α

α + σ2
‖ej‖S ,

where σ = inf [kminkmax]{σl(k)}l=1,...,nk
. Then the estimate (5.10) becomes

‖ej + Rj,αF (qj , kj)‖S ≤ α

α + σ2
‖ej‖S +

(
9d2d4

4α
+

d2

2
√

α

)
‖ej‖2S . (5.11)

Hence

‖ej+1‖S ≤ d0

N
+

d1

N2
+

d3

2
√

αN2
+

[
α

α + σ2
+

1
N

(
9d2d5

4α
+

d6

2
√

α

)]
‖ej‖S

+
(

9d2d4

4α
+

d2

2
√

α

)
‖ej‖2S . (5.12)
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Now, let δ be a fixed number in (0, 1). Then, there exits α in (0, 1) satisfying

α

α + σ2
≤ δ

3
. (5.13)

Similarly, there exists ρ = ρ(α), such that
(

9d2d4

4α
+

d2

2
√

α

)
ρ ≤ δ

3
. (5.14)

Therefore, we can choose N1 = N1(α) ∈ N so that

1
N

(
9d2d5

4α
+

d6

2
√

α

)
≤ δ

3
, (5.15a)

d0

N
+

d1

N2
+

d3

2
√

αN2
≤ (1− δ)ρ, (5.15b)

for all N ≥ N1.
Assume that ‖e0‖S ≤ ρ. It may be easily shown by recurrence that for all N ≥ N1 and

0 ≤ j ≤ N − 1:

‖ej‖S ≤ ρ, and ‖ej+1‖S ≤ d0

N
+

d1

N2
+

d3

2
√

αN2
+ δ‖ej‖S .

Hence

‖ej+1‖S ≤
(

d0

N
+

d1

N2
+

d3

2
√

αN2

)
1− δj+1

1− δ
+ δj+1‖e0‖S (5.16)

holds for 0 ≤ j ≤ N − 1. In particular, for j = N − 1, we have

‖eN‖S ≤
(

d0

N
+

d1

N2
+

d3

2
√

αN2

)
1− δN

1− δ
+ δN‖e0‖S

=
1

N
√

α

[(
(d0 +

d1

N
)
√

α +
d3

2N

)
1− δN

1− δ
+ NδN

√
α||e0||S

]
. (5.17)

From (5.13), it follows that

√
α ≤ σ

√
δ√

3− δ
.

Then, there exist N0 ≥ N1 and a positive constant C independent of N and α, such that
(

(d0 +
d1

N
)

σ
√

δ√
3− δ

+
d3

2N

)
1− δN

1− δ
+

NδN+ 1
2 σ√

3− δ
‖e0‖S ≤ C.

Finally, choosing ‖e0‖S = ρ and c0 a constant such that
(

9d2d4

4
+

d2σ
√

δ

2
√

3− δ

)
c0 ≤ δ

3
,

the proof of Theorem 5.1 is complete by substituting the above estimates into the estimate
(5.17). 2
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Remark 5.4. It is evident from the inequality (5.13) that α is proportional to σ. Consequently,
if we increase the kmax, i.e., we take a larger frequency band, then the infinimum σ will naturally
decrease. On the other hand, if we fix the frequency and increase L to reconstruct the high
frequency modes of the medium, we get the logarithmic convergence found in studying the
classical iterative methods. This is provoked by the exponentially decaying of σ.

Remark 5.5. The parameter k does not have to be a frequency. In fact, in [7], for the fixed
frequency case, a spatial frequency parameter is used.

Remark 5.6. In our formulation of the problem, it is assumed that the measurement system
is efficient and the data is noise-free (without fluctuations). However, in real measurements,
there are always various types of errors associated with the data, which represents a major
difficulty for solving ill-posed problems. Fortunately, by taking into account the uncertainty
principle, the inverse problem becomes regularized and thus a small perturbation in the data,
i.e., ‖Fκ(q, k) − F (q, k)‖L(S,Y ) < κ with κ small, essentially has no effect on the convergence
analysis.

The derivation of the error between the real medium q and its observable part q̃ is strongly
linked to the uniqueness of the inverse problem and the stability of the inverse problem when
the frequency is increasing. A future project is to investigate this important connection.

6. Convergence for the Inverse Medium Scattering

In this section, we apply the convergence theorem of Section 5 to the inverse scattering
problem introduced in Section 2. In particular, we verify all the hypotheses for our convergence
theorem for the recursive linearization algorithm of Chen [9].

The method developed in Section 5 is based on the singular eigenvalue analysis of the
scattering map. These singular values provide the limit in observation of details of the medium
by a measurements system. Such an analysis provides a good explanation about the uncertainty
principle. Unfortunately, in practice, because of extremely small magnitudes and the noise
associate with the data, the computation of all of the singular values becomes a very difficult
task. To overcome this difficulty, by following [9], we propose a useful limit to the observation.

It is known that inside the disc D, the solution of the Helmholtz equation can be expressed
in the polar coordinates as

φ0(r, θ) =
∞∑

m=−∞
αmJm(kr)eimθ,

where the sequence α = {αm} is complex.
Similarly, outside of the disc D, the solution ψ of the homogeneous Helmholtz equation can

be expressed as

ψ(r, θ) =
∞∑

m=−∞
ξmHm(kr)eimθ,

where the sequence ξ = {ξm} is also complex. Here, Hm is the Hankel function of the first kind
of order m, Jm is the Bessel function of the first kind of order m.

The scattering matrix SR,k(q) is a linear mapping defined by

ξ = SR,kα, (6.1)



Error Estimates for the Recursive Linearization of Inverse Medium Problems 741

for every α of an incident field and ξ of the corresponding scattered field. Then the nonlinear
inverse scattering is to determine the medium function q from knowledge of the following set
of matrices

{
SR,kj (q), j = 1, . . . , N

}
.

The data represents all the information measured on the boundary of the medium at frequencies
kj , j = 1, . . . , N . Furthermore, it has been shown in [9] that the coefficients of the matrix
SR,k satisfy

(SR,k)m,n = O(Hm(kR)−1), (SR,k)n,m = O(Jm(kR)),

for an arbitrary integer n and large integer m ≥ N0(kR) (the Bessel function of order 0).
From the asymptotic behavior of the Bessel and Hankel functions for large order m, it is clear
that an entry of SR,k whose row or column index is greater in absolute value than N0(kR) is
infinitesimal. Hence, the m-angular expansion coefficient of the scattered field with large m

is very small. It follows from the uncertainty principle that the propagating waves associated
with those coefficients are not detectable by the measurement system.

Therefore, the information about the medium present in the collected data is essentially
contained in the square matrix: (SR,k)m,n, |m|, |n| ≤ β(k), where β is the observation limit
which is larger than N0(kR) and depends on the regularity of the medium.

By taking

F (q, k) =
{

(SR,k)m,n, |m|, |n| ≤ L,

0, outside,

with L = maxkmin≤k≤kmax β(k), the problem may be reduced to the general one studied in
Section 5.

We next apply our convergence theorem to the present problem. By Theorems 3.1 and 3.2,
the scattering matrix SR,k(q) depends analytically on the medium and its linearization S′R,k

is injective for k outside a countable set in R+. It is easily verified that the function F (q, k)
satisfies all of the hypotheses H1, H2, and H3 of the last section. Therefore, Theorem 5.1
presents the first convergence result along with the error estimate for the recursive linearization
method of Chen [9]. We believe that the convergence analysis may be applied to investigate
convergence properties of other methods based on the general recursive linearization.
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Appendix: Uncertainty Principle

We present here a heuristic justification of our approach from a physical point of view.
For convenience, the discussion is focused on the scattering of electromagnetic waves rather
than acoustic waves. In this setting, the inverse scattering problem is concerned with the
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reconstruction of a scatterer (object) from its light field (image). The relation between the
object structure and light field is described by the Maxwell equations. The measurements of
the fields are usually detected far away from the object, i.e., at least a few wavelengths away,
which encode the object information.

An important question arises: what is the highest resolution one can expect in analyzing
the light field for an optical system?

At the end of the nineteenth century, Abbe and Rayleigh showed that there is a limit to
the sharpness of details that could be observed with an optical microscope. This limit known
as the diffraction limit is about half a wavelength (λ/2). Heisenberg later used the example
of an optical experiment to illustrate the uncertainty principle. In [20], interesting examples
of the Heisenberg relation were presented based on light diffraction and analyzed in terms of
the Fourier integral analysis. The analysis indicates that when the scatterer is larger than λ/2,
almost the whole Fourier modes could be detected in the far field and consequently may be
recovered. However, when its dimensions becomes smaller than λ/2, a large part of its Fourier
modes becomes evanescent and thus is lost. The scatterer can no longer be reconstructed.
Moreover, in this case, it becomes impossible to distinguish the scatterer’s features from those
of a smaller scatterer.

The loss of the details is related to the existence of non-radiative components of the field
known as evanescent waves which contain small details of the scatterer. In general, a light beam
incident on a scatterer q(x) may be converted into propagating components that propagate
toward the detector and evanescent components confined on the surface. The propagating
waves transmit the low spatial frequencies of the object, which contain the most significant
characteristics of the object. The evanescent waves, on the other hand, are related to the high
spatial frequency information of the object, which contain information about fine (sub-Rayleigh)
features of the object.

Consequently, from the measurements far away from the scatterer, the smallest details that
can be detected are always larger than half a wavelength. Denote by q̃(k) the part of the
medium q(x) that can by observed through the detected propagating waves. The uncertainty
principle may be easily understood in the case of weak scattering. If the wave number is small
compare to the magnitude of the scatterer, it is well known that the knowledge of the scattered
fields for all incident waves is equivalent to the knowledge of the Fourier modes of the scatterer
in the aperture D(2k), where k is the wave number, i.e.,

q̃(k) ∼ F−1(χD(2k)F(q))(x),

with F the Fourier transform. Hence the scatterer can be determined with a resolution 2π
2k = λ/2

under the weak scattering assumption.
Note that the uncertainty principle does not limit the resolution but merely provides a limit

on the accuracy of the reconstruction of the scatterer for a given wave number. Consequently, it
is impossible to specify precisely the complete features of a scatterer from measurements only at
low wave numbers. In practice, the uncertainty on the reconstructed scatterer can be reduced
by increasing the number and the magnitude of wave numbers. An important challenge is to use
the uncertainty principle to derive an accurate reconstruction method of the scatterer, which
is the focus of the present paper.

Mathematically, the reconstruction of the entire features of the scatterer is assured once
the uniqueness of the inverse problem is proved. In fact, it is well known that the scatterer is
uniquely determined even when k = 0. The uniqueness argument may be easily understood
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in the case of weak scattering, k small. In weak scattering, the measurement of the far field
reconstructs only the Fourier modes {F(q)(ξ), |ξ| ≤ 2k}. Assume that there is another function
p(x) which has the same Fourier modes. Then F(p−q)(ξ) = 0 in D(2k). Since p−q is compactly
supported in a bounded domain D, the function F(p − q)(ξ) is an entire function of ξ ∈ C2

which vanishes in a ball. It follows that the function vanishes identically and consequently
p = q. Furthermore, the rest of Fourier modes of the scatterer can be reconstructed by a
spectral extrapolation. Therefore, the scatterer can be completely reconstructed. Moreover,
the approximation is exact. In other words, one can reconstruct arbitrarily accurate small
details of the scatterer from the knowledge of its Fourier modes on a fixed bounded domain
and a guess on its regularity. This conclusion clearly contradicts to the uncertainty principle:
one cannot resolve details smaller than one half of the wavelength. The contradiction results
from the overlooked stability issue. In fact, for any realistic situation, the measured data is
never exact hence only noisy data about those finite Fourier modes may be assumed. As the
result, the techniques that reconstruct the scatterer from less information amplify the error
in the derivation of the rest of the information. Consequently, the infinitesimal details of the
scatterer are lost due to the amplified error, i.e., the ill-posedness of the inverse problem.
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