- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A robust and general solver for Laplace's equation on the interior of a simply connected domain in the plane is described and tested. The solver handles general piecewise smooth domains and Dirichlet, Neumann, and Robin boundary conditions. It is based on an integral equation formulation of the problem. Difficulties due to changes in boundary conditions and corners, cusps, or other examples of non-smoothness of the boundary are handled using a recent technique called recursive compressed inverse preconditioning. The result is a rapid and very accurate solver which is general in scope, and its performance is demonstrated via some challenging numerical tests.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1201-m3644}, url = {http://global-sci.org/intro/article_detail/jcm/8441.html} }A robust and general solver for Laplace's equation on the interior of a simply connected domain in the plane is described and tested. The solver handles general piecewise smooth domains and Dirichlet, Neumann, and Robin boundary conditions. It is based on an integral equation formulation of the problem. Difficulties due to changes in boundary conditions and corners, cusps, or other examples of non-smoothness of the boundary are handled using a recent technique called recursive compressed inverse preconditioning. The result is a rapid and very accurate solver which is general in scope, and its performance is demonstrated via some challenging numerical tests.