- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the initial-boundary value problem (IBVP) for the micropolar Navier-Stokes equations (MNSE) and analyze a first order fully discrete mixed finite element scheme. We first establish some regularity results for the solution of MNSE, which seem to be not available in the literature. Next, we study a semi-implicit time-discrete scheme for the MNSE and prove $\boldsymbol{L}^2-\boldsymbol{H}^1$ error estimates for the time discrete solution. Furthermore, certain regularity results for the time discrete solution are established rigorously. Based on these regularity results, we prove the unconditional $\boldsymbol{L}^2-\boldsymbol{H}^1$ error estimates for the finite element solution of MNSE. Finally, some numerical examples are carried out to demonstrate both accuracy and efficiency of the fully discrete finite element scheme.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2201-m2021-0315}, url = {http://global-sci.org/intro/article_detail/jcm/22153.html} }In this paper, we consider the initial-boundary value problem (IBVP) for the micropolar Navier-Stokes equations (MNSE) and analyze a first order fully discrete mixed finite element scheme. We first establish some regularity results for the solution of MNSE, which seem to be not available in the literature. Next, we study a semi-implicit time-discrete scheme for the MNSE and prove $\boldsymbol{L}^2-\boldsymbol{H}^1$ error estimates for the time discrete solution. Furthermore, certain regularity results for the time discrete solution are established rigorously. Based on these regularity results, we prove the unconditional $\boldsymbol{L}^2-\boldsymbol{H}^1$ error estimates for the finite element solution of MNSE. Finally, some numerical examples are carried out to demonstrate both accuracy and efficiency of the fully discrete finite element scheme.