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Abstract

In this paper, we consider the initial-boundary value problem (IBVP) for the microp-

olar Naviers-Stokes equations (MNSE) and analyze a first order fully discrete mixed finite

element scheme. We first establish some regularity results for the solution of MNSE, which

seem to be not available in the literature. Next, we study a semi-implicit time-discrete

scheme for the MNSE and prove L
2-H1 error estimates for the time discrete solution. Fur-

thermore, certain regularity results for the time discrete solution are establishes rigorously.

Based on these regularity results, we prove the unconditional L2-H1 error estimates for

the finite element solution of MNSE. Finally, some numerical examples are carried out to

demonstrate both accuracy and efficiency of the fully discrete finite element scheme.
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1. Introduction

Let Ω ⊂ R3 be a bounded convex polyhedron domain. We consider the homogeneous

incompressible viscous Newtonian Micropolar fluids. The microstructure systems consists of

the incompressible Navier-Stokes equations for velocity with pressure and angular momentum

equations for angular velocity, which are described by (see, e.g., [9, 10])

∂tu+ (u · ∇)u− (µ + µr)∆u+ ∇p = f + 2µrcurlw, (1.1)

divu = 0, (1.2)

∂tw + (u · ∇)w − c1∆w − c2∇ divw + 4µrw = g + 2µrcurlu (1.3)

for (x, t) ∈ Ω × (0, T ), where u is the linear velocity; w is the angular velocity; p is the fluid

pressure, f is the density of external body forces per unit mass, g is the body source of moments.

c1, c2, µr and µ are material coefficients which are all constant coefficients greater than zero.

The system (1.1)-(1.3) is supplemented with initial conditions for the linear velocity and the

angular velocity

u(x, 0) = u0, w(x, 0) = w0, (1.4)
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together with the following the no-slip boundary condition for the linear velocity and the angular

velocity:

u = 0, w = 0 on ∂Ω × (0, T ). (1.5)

The system (1.1)-(1.5) describes the fluid particles may translate and rotate independently

of the fluid (see, e.g., [4, 9, 10]). The Micropolar fluid models degenerates into the classical

Navier-Stokes equations when microrotation is neglected (w = 0) and µr = 0. In the literature,

many numerical methods have been developed for solving the nonstationary Navier-Stokes

equations, see, e.g., [14,16,18,22,24] and the references therein. The microstructure fluid models

is an important generalization of the incompressible Navier-Stokes equations. The derivation

and physical discussion of the MNSE are referred to [3, 10, 21]. It is well konwn that the

microstructure systems plays an important role in smart fluids and polarizable media [28,31]. In

recent years, the micromachining technology has been used to develop a number of microfluidic

systems, for example, silicon, glass, quartz and plastics [31]. Microchannels and chambers are

the essential part of micropolar fluid system. Microchannels are also used for reactant transport,

such as biochemical reaction chambers, physical particle separation, inkjet print heads, or as

heat exchangers to cool computer chips. For more information about microchannels, we refer

to [31] and the references therein.

The existence of solutions for the Micropolar fluid equations was established by  Lukaszewicz

[21]. In recent years, some attention has been paid to the numerical methods for this microstruc-

ture system. The penalty finite element method for the Micropolar fluid equations was proposed

by Ortega et al. [30]. An important progress was made by Nochetto et al. [29], they proposed

and analyzed an unconditionally stable semi-implicit fully discrete finite element scheme for

MNSE with the nice features that the computation of the linear and angular velocities are

decoupled. More recently, the convergence analysis of fractional time-stepping techniques for

the Micropolar fluid equations had been obtained by Salgado [32]. The fractional time-stepping

schemes or projection methods are known as an efficient decoupled schemes for incompressible

flows, some extensions and applications of these methods to MNSE can be found in [20] with

semi-discrete schemes and [35, 40] with fully discrete schemes. However, in our opinion, there

are still some important problems in these references that remain to be solved. Firstly, all

the convergence results for the finite element methods of the above works are obtained under

proper regularity assumptions on the exact solution of the Micropolar fluid equations, which

seems to be lacking in the literature. Secondly, due to the highly nonlinear structures of MNSE,

the analysis of fully discrete finite element methods often requires that the time step τ satisfies

an CFL like condition. For example, the condition τh−1/2 ≤ C are proposed for the error

estimates in [29], where h is the spacial mesh width. Similar conditions are also imposed in the

analysis in [32, 40]. Such smallness assumption on the time step will affect the applications of

the finite element methods for MNSE.

The aim of this work is threefold. Firstly, we show certain regularity results for the solution

of MNSE with the help of the energy method (see, e.g., [16, 36]). These regularity results

are essential for the error estimates of numerical methods for the Micropolar fluid equations.

Secondly, we will give the L2-H1 error estimates for the Euler semi-implicit time discrete

solution of MNSE. Furthermore, certain regularity results for the time discrete solution are

also proved rigorously, which play a key role in the unconditional convergence analysis of fully

discrete finite element method. However, for some of them, we have not seen a strict proof in

relevant literature. Lastly, we consider the Euler semi-implicit fully discrete scheme based on

mixed finite element method for the MNSE and prove the unconditional L2-H1 error estimates.
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For this purpose, the error between the exact solution and the solution of the fully discrete

scheme are divided into three parts: the error between the exact solution and the time discrete

solution, the time discrete solution and certain Galerkin projection of the time discrete solution,

Galerkin projection of the time discrete solution and the fully discrete solution. Concerning

more unconditional convergence results of nonlinear partial differential equation, interested

readers are referred to [11,14,15,23,25,34] and the references cited therein. Note that although

the three-dimensional case is analyzed in this paper, all the results of this paper are certainly

valid for two-dimensional domains.

The rest of this work is organized as follows. In Section 2, we introduce some notations

and basic assumptions for this work. In Section 3, we establish some regularity results for the

solution of the MNSE. In Section 4, we propose an Euler semi-implicit time discrete schemes

to the MNSE and show the L2-H1 error estimate for the time-discrete solution. We developed

some regularity results for the time-discrete solution in Section 5. In Section 6, we show L2-H1

unconditional convergence of the fully discrete solution. Finally, we provide some numerical

experiments validation of this error estimates in Section 7.

2. Notation and Preliminaries

In this section, we present some notations and preliminary results for this work. For 1 ≤

p ≤ ∞, let Lp(Ω) be the usual Lebesgue space on Ω. For all non-negative integers k and r,

W k,r(Ω) stands for the standard Sobolev spaces on Ω. Moreover, we write Hk(Ω) = W k,2(Ω).

We introduce the Hilbert spaces like H1(Ω), L2(Ω) and their subspaces H1
0 (Ω), L2

n(Ω), which

is zero on ∂Ω. Finally, we also introduce the following classical divergence-free spaces (see,

e.g., [36]):

L2
div(Ω) =

{

v ∈ L2(Ω)| div v = 0, v|∂Ω = 0
}

,

H1
div(Ω) =

{

v ∈H1(Ω)| div v = 0, v|∂Ω = 0
}

.

The space L2
0(Ω) stands for the average of the space L2(Ω) equal to zero on Ω. The L2(Ω) inner

product is denoted by (·, ·). The vector-valued quantities will be denoted in boldface notations,

such as u = (u1, u2, u3) and L2(Ω) = (L2(Ω))3.

By applying the Green’s formula for the curl operator, we have the following the identity:

(curlu,v) = (curl v,u), ∀u,v ∈H1
0 (Ω). (2.1)

Under the assumptions that Ω is bounded and simply connected, there exists the orthogonal

decomposition of H1
0 (Ω) (see, e.g., [13])

‖∇u‖2L2(Ω) = ‖ divu‖2L2(Ω) + ‖curlu‖2L2(Ω), ∀u ∈H1
0 (Ω). (2.2)

For convenience, we introduce some bilinear and trilinear forms as follows:

a(u,v) =

∫

Ω

∇u : ∇vdx, d(v, q) =

∫

Ω

divvqdx, b(u,v,w) =

∫

Ω

(u · ∇)v ·wdx

for any (u,v,w, q) ∈ (H1
0 (Ω))3×L2

0(Ω). If divu = 0, the trilinear forms have following relations

(see, e.g., [36]):

b(u,v,v) = 0, b(u,v,w) = −b(u,w,v). (2.3)
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Multiplying the system (1.1)-(1.5) by test functions (v, q,ψ) ∈ H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω)

and integrating by parts, respectively, then the weak formulation of the system (1.1)-(1.5) can

be written as: Find (u, p,w) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω) such that

(ut,v) + b(u,u,v) + (µ + µr)a(u,v) − d(v, p) + d(u, q)

= (f ,v) + 2µr(curlw,v), (2.4)

(wt,ψ) + b(u,w,ψ) + c1a(w,ψ) + c2(divw, divψ) + 4µr(w,ψ)

= (g,ψ) + 2µr(curlu,ψ). (2.5)

The weak formulation (2.4)-(2.5) of pressure p can be eliminated in the usual way for the

test function v ∈ H1
div(Ω). Thus we can show the solution (u,w) of the system (2.4)-(2.5)

satisfies the following weak formulation: for any (v,ψ) ∈ H1
div(Ω) × H1

0 (Ω), find (u,w) ∈

H1
div(Ω) ×H1

0 (Ω) such that

(ut,v) + b(u,u,v) + (µ + µr)a(u,v) = (f ,v) + 2µr(curlw,v), (2.6)

(wt,ψ) + b(u,w,ψ) + c1a(w,ψ) + c2(divw, divψ) + 4µr(w,ψ)

= (g,ψ) + 2µr(curlu,ψ). (2.7)

The existence of weak solution for the problem (2.4)-(2.5) is proved by Theorem 1.6.1 of [21]

(or see, e.g., [29]). However, these results are not enough to the subsequent convergence analysis

of numerical methods. In next section, we will prove some regularity results on the solution

of the problem (2.4)-(2.5). To this end, we make the following assumptions for the problem

(2.4)-(2.5).

Hypothesis 2.1. The initial datas u0 ∈ H1
div(Ω) ∩ H2(Ω), w0 ∈ H1

0 (Ω) ∩ H2(Ω), p0 ∈

L2
0(Ω) ∩H1(Ω), the external force f and the body source g satisfies the following boundedness:

sup
0≤t≤T

(‖f(t)‖L2(Ω) + ‖g(t)‖L2(Ω) + ‖∂tf(t)‖L2(Ω) + ‖∂tg(t)‖L2(Ω))

+ ‖u0‖H2(Ω) + ‖w0‖H2(Ω) ≤ C.

Here and after, we denote by C > 0 a general constant which depends on the domain Ω, the

fixed time T , the material coefficients (µr, µ, c1, c2), the initial data (u0,w0) and the external

forces (f , g).

Hypothesis 2.2. The system (2.4)-(2.5) has a weak solution u ∈ L2(0, T ;H1
div(Ω)), w ∈

L2(0, T ;H1
0(Ω)) satisfying

∫ T

0

‖∇u(t)‖4L2(Ω)dt ≤ C.

Hypothesis 2.3. We assume that the boundary of Ω is smooth so that the unique solution

(v, q) ∈H1
div(Ω) × L2

0(Ω) of the steady Stokes problem

−∆v + ∇p = f , div v|Ω = 0, v|∂Ω = 0,

and the unique solution ψ ∈H1
0 (Ω) of the pure displacement problem

−∆ψ −∇ divψ = g, ψ|∂Ω = 0,

for the functions f , g ∈ L2(Ω) satisfies the following regularity estimates:

‖v‖H2(Ω) + ‖q‖H1(Ω) ≤ C‖f‖L2(Ω),

‖ψ‖H2(Ω) + ‖ divψ‖H1(Ω) ≤ C‖g‖L2(Ω).
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Remark 2.1. It is well known that the Hypothesis 2.3 holds under the assumption that the

boundary ∂Ω is convex polyhedron or of class C1,1 (see, e.g., [2, 16]).

Finally, we introduce the stokes operator A1 and the Lamé operator A2 such that

A1 : D(A1) = H2(Ω) ∩H1
div(Ω) → L2

div(Ω), A1 = −P1∆,

A2 : D(A2) = H2(Ω) ∩H1
0 (Ω) → L2

n(Ω), A2 = −P2(c1∆ + c2∇ div),

where P1 is an L2-projection from L2(Ω) to L2
div(Ω) and P2 is an L2-projection from L2(Ω)

to L2
n(Ω). The strongly elliptic operator (or Lamé operator) A2 is indeed a positive operator.

Clearly, ‖A2v‖L2(Ω) and ‖v‖H2(Ω) are equivalent norms in D(A2). It is seen that the following

inequalities hold (see, e.g., [12, 16]):

‖v‖L∞(Ω) + ‖v‖W 1,3(Ω) ≤ C‖v‖
1
2

H1(Ω)‖Aiv‖
1
2

L2(Ω), ∀v ∈ D(Ai), (2.8)

‖v‖H2(Ω) ≤ C‖Aiv‖L2(Ω), ∀v ∈ D(Ai). (2.9)

3. Some a Priori Estimates of the Solution

In this section, we establish some a priori estimates for the solution of Micropolar fluids by

energy technique. These a priori estimates imply the regularity estimates of the exact solution,

which are necessary for the subsequent error estimates of the fully discrete scheme. Before

proceeding further, we need the following Gronwall Lemma (see, e.g., remark to Lemma 1

in [17]):

Lemma 3.1. Let φ(t), ϕ(t) and η(t) be nonnegative continuous functions in [0, T ] such that

φ(t) +

∫ t

0

ϕ(s)ds ≤ φ(0) +

∫ t

0

η(s)φ(s)ds + C0,

where the constant C0 is nonnegative, then

φ(t) +

∫ t

0

ϕ(t)ds ≤ (φ(0) + C0) exp

(
∫ t

0

η(s)ds

)

, ∀ 0 ≤ t ≤ T.

We first present the following energy estimate for the solution of the problem (2.4)-(2.5)

which has been given in [29].

Theorem 3.1. Suppose that Hypothesis 2.1 holds. The solution (u,w, p) of the problem (2.4)-

(2.5) satisfies

sup
0≤t≤T

(

‖u(t)‖2L2(Ω) + ‖w(t)‖2L2(Ω)

)

+

∫ T

0

(‖∇u(t)‖2L2(Ω) + ‖p(t)‖2L2(Ω) + ‖∇w(t)‖2L2(Ω))dt ≤ C. (3.1)

This energy estimate implies that the solution of the problem (2.4)-(2.5) satisfies

u ∈ L2(0, T ;H1
div(Ω)) ∩ L∞(0, T ;L2

div(Ω)),

w ∈ L2(0, T ;H1
0(Ω)) ∩ L∞(0, T ;L2(Ω)).

In the next step, we will show that

u ∈ L∞(0, T ;H1
div(Ω)) ∩ L2(0, T ;H2(Ω)),

w ∈ L∞(0, T ;H1
0(Ω)) ∩ L2(0, T ;H2(Ω)).
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Theorem 3.2. Suppose that Hypothesis 2.1-2.2 hold. Then the solution (u,w) of the problem

(2.4)-(2.5) satisfies

sup
0≤t≤T

(

‖u(t)‖2H1(Ω) + ‖w(t)‖2H1(Ω)

)

+

∫ T

0

(

‖u(t)‖2H2(Ω) + ‖w(t)‖2H2(Ω)

)

dt ≤ C. (3.2)

Proof. Let (v, q) = (A1u, 0) in (2.4) and ψ = A2w in (2.5) and adding together, we can

show

1

2

d

dt
(‖∇u‖2L2(Ω) + c1‖∇w‖2L2(Ω) + c2‖ divw‖2L2(Ω))

+ (µ + µr)‖A1u‖
2
L2(Ω) + ‖A2w‖2L2(Ω) + 4µrc1‖∇w‖2L2(Ω)

+ 4µrc2‖ divw‖2L2(Ω) + b(u,u,A1u) + b(u,w,A2w)

= (f ,A1u) + (g,A2w) + 2µr(curlw,A1u) + 2µr(curlu,A2w). (3.3)

By virtue of the Hölder inequality, the Young inequality, (2.2) and (2.8), we have

|b(u,u,A1u)| ≤ ‖u‖L6(Ω)‖∇u‖L3(Ω)‖A1u‖L2(Ω)

≤
µ

2
‖A1u‖

2
L2(Ω) + C‖∇u‖6L2(Ω),

|b(u,w,A2w)| ≤ ‖u‖L6(Ω)‖∇w‖L3(Ω)‖A2w‖L2(Ω)

≤
1

4
‖A2w‖2L2(Ω) + C‖∇u‖4L2(Ω)‖∇w‖2L2(Ω),

|(f ,A1u)| ≤
µr

4
‖A1u‖

2
L2(Ω) + C‖f‖2L2(Ω),

|(g,A2w)| ≤
1

8
‖A2w‖2L2(Ω) + C‖g‖2L2(Ω),

2µr |(curlw,A1u)| ≤ C‖∇w‖2L2(Ω) +
µr

4
‖A1u‖

2
L2(Ω),

2µr |(curlu,A2w)| ≤ C‖∇u‖2L2(Ω) +
1

8
‖A2w‖2L2(Ω).

Combining the above inequalities and (3.3), we can show

d

dt

(

‖∇u‖2L2(Ω) + c1‖∇w‖2L2(Ω) + c2‖ divw‖2L2(Ω)

)

+ (µ + µr)‖A1u‖
2
L2(Ω) + ‖A2w‖2L2(Ω)

≤ C
(

‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)

+ C
(

1 + ‖∇u‖4L2(Ω)

)(

‖∇u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)

. (3.4)

Integrating time from 0 to t for the inequality (3.4), we conclude that

‖∇u(t)‖2L2(Ω) + c1‖∇w(t)‖2L2(Ω) +

∫ t

0

(

‖A1u‖
2
L2(Ω) + ‖A2w‖2L2(Ω)

)

dt

≤ ‖∇u0‖
2
L2(Ω) + (c1 + c2)‖∇w0‖

2
L2(Ω) + C

∫ T

0

(

‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)

dt

+ C

∫ t

0

(

1 + ‖∇u‖4L2(Ω)

)(

‖∇u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)

dt. (3.5)
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By applying Hypothesis 2.2, we obtain

∫ T

0

(

1 + ‖∇u‖4L2(Ω)

)

dt ≤ C. (3.6)

By applying Lemma 3.1, Hypothesis 2.1 and (3.6) for the inequality (3.6), we can get (3.2). �

We also need to give some a priori estimates on the time derivative of the solution.

Theorem 3.3. Suppose that Hypothesis 2.1-2.2 hold. Then the solution (u,w) of the problem

(2.4)-(2.5) satisfies the estimates

sup
0≤t≤T

(

‖ut(t)‖
2
L2(Ω) + ‖wt(t)‖

2
L2(Ω)

)

+

∫ T

0

(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt ≤ C. (3.7)

Proof. By differentiating both sides of (2.4) and (2.5) with respect to t, we conclude that

(utt,v) + b(ut,u,v) + b(u,ut,v) + (µ + µr)a(ut,v) − d(v, pt) + d(ut, q)

= (ft,v) + 2µr(curlwt,v), (3.8)

(wtt,ψ) + b(ut,w,ψ) + b(u,wt,ψ) + c1a(wt,ψ) + c2(divwt, divψ) + 4µr(wt,ψ)

= (gt,ψ) + 2µr(curlut,ψ) (3.9)

for any (v, q,ψ) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω) and for all t ∈ (0, T ).

Taking (v, q) = (ut, pt) in (3.8) and ψ = wt in (3.9) and adding together, by applying (2.1),

(2.3), we get

1

2

d

dt

(

‖ut‖
2
L2(Ω) + ‖wt‖

2
L2(Ω)

)

+ µ‖∇ut‖
2
L2(Ω)

+ c1‖∇wt‖
2
L2(Ω) + c2‖ divwt‖

2
L2(Ω)

+ µr‖curlut − 2wt‖
2
L2(Ω)

+ b(ut,u,ut) + b(ut,w,wt)

= (ft,ut) + (gt,wt). (3.10)

We apply the Hölder inequality and the Young inequality to obtain

|b(ut,u,ut)| ≤
µ

6
‖∇ut‖

2
L2(Ω) + C‖u‖2H2(Ω)‖ut‖

2
L2(Ω),

|b(ut,w,wt)| ≤
µ

6
‖∇ut‖

2
L2(Ω) + C‖w‖2H2(Ω)‖ut‖

2
L2(Ω),

|(ft,ut)| ≤
µ

6
‖∇ut‖

2
L2(Ω) + C‖ft‖

2
L2(Ω),

|(gt,wt)| ≤
c1
2
‖∇wt‖

2
L2(Ω) + C‖gt‖

2
L2(Ω).

Combining the above inequalities and (3.10), we can show

d

dt

(

‖ut‖
2
L2(Ω) + ‖wt‖

2
L2(Ω)

)

+ µ‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω) (3.11)

≤ C
(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

+ C
(

‖u‖2H2(Ω) + ‖w‖2H2(Ω)

)(

‖ut‖
2
L2(Ω) + ‖wt‖

2
L2(Ω)

)

.
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By applying the L2-orthogonal decomposition L2(Ω) = L2
div(Ω)⊕∇H1(Ω) (see, e.g., [13]) and

the divergence-free property of ut(0), we have

‖ut(0)‖L2(Ω) = sup
v∈L2

div(Ω)

(ut(0),v)

‖v‖L2(Ω)
, ‖wt(0)‖L2(Ω) = sup

ψ∈L2(Ω)

(wt(0),ψ)

‖ψ‖L2(Ω)
.

Employing (2.2), (2.8) and the Hölder inequality, we conclude that

‖ut(0)‖L2(Ω) ≤ C‖(u0 · ∇)u0‖L2(Ω) + C‖u0‖H2(Ω)

+ C‖f(0)‖L2(Ω) + C‖curlw0‖L2(Ω)

≤ C‖u0‖H2(Ω)‖∇u0‖L2(Ω) + C‖u0‖H2(Ω)

+ C‖f(0)‖L2(Ω) + C‖∇w0‖L2(Ω), (3.12)

‖wt(0)‖L2(Ω) ≤ C‖(u0 · ∇)w0‖L2(Ω) + C‖w0‖H2(Ω)

+ C‖g(0)‖L2(Ω) + C‖curlu0‖L2(Ω)

≤ C‖u0‖H2(Ω)‖∇w0‖L2(Ω) + C‖w0‖H2(Ω)

+ C‖g(0)‖L2(Ω) + C‖∇u0‖L2(Ω). (3.13)

Combining (3.12), (3.13) and Hypothesis 2.1, we have

‖ut(0)‖2L2(Ω) + ‖wt(0)‖2L2(Ω) + C

∫ T

0

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

dt ≤ C. (3.14)

Integrating time from 0 to t for the inequality (3.11), we obtain

‖ut‖
2
L2(Ω) + ‖wt‖

2
L2(Ω) +

∫ t

0

(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt

≤ ‖ut(0)‖2L2(Ω) + ‖wt(0)‖2L2(Ω) + C

∫ T

0

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

dt

+ C

∫ t

0

(

‖u‖2H2(Ω) + ‖w‖2H2(Ω)

)(

‖ut‖
2
L2(Ω) + ‖wt‖

2
L2(Ω)

)

dt. (3.15)

By applying Theorem 3.2, we conclude that

∫ T

0

(

‖u‖2H2(Ω) + ‖w‖2H2(Ω)

)

dt ≤ C. (3.16)

By applying Lemma 3.1, (3.14) and (3.16) for the inequality (3.15), we show that the required

estimate (3.7). �

By Theorem 3.3, we know that

ut,wt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

In the next step, we will show a priori estimate on the second order spatial derivatives and time

derivatives of the solution, respectively, i.e.,

u,w ∈ L∞(0, T ;H2(Ω)), utt,wtt ∈ L2(0, T ;H−1(Ω)).
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Theorem 3.4. Suppose that Hypothesis 2.1-2.3 hold. The solution (u,w, p) of the problem

(2.4)-(2.5) satisfies the estimates:

sup
0≤t≤T

(

‖u(t)‖2H2(Ω) + ‖w(t)‖2H2(Ω) + ‖p(t)‖2H1(Ω)

)

+

∫ T

0

(

‖utt‖
2
(H1

div(Ω))′ + ‖wtt‖
2
(H−1(Ω))

)

dt ≤ C. (3.17)

Proof. According to (2.4)-(2.5), we have (u, p,w) satisfy the following system:











− (µ + µr)∆u+ ∇p = −ut − (u · ∇)u+ f + 2µrcurlw,

divu = 0,

− c1∆w − c2∇ divw = −wt − (u · ∇)w − 4µrw + g + 2µrcurlu

in D′((0, T ) × Ω).

We apply the Hölder inequality, the Young inequality, Hypothesis 2.3, (2.2) and (2.8) to

obtain

(µ + µr)‖u‖H2(Ω) + ‖p‖H1(Ω)

≤ C‖ut‖L2(Ω) + C‖f‖L2(Ω) + C‖∇w‖L2(Ω) + C‖∇u‖3L2(Ω)

+
µ + µr

4
‖u‖H2(Ω), (3.18)

c1‖w‖H2(Ω) + c2‖divw‖H1(Ω)

≤ C‖wt‖L2(Ω) + C‖g‖L2(Ω) + C‖∇u‖L2(Ω) + C‖w‖L2(Ω)

+ C‖∇u‖L2(Ω)‖∇w‖2L2(Ω) +
µ + µr

4
‖u‖H2(Ω). (3.19)

Then we have

‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖w‖H2(Ω)

≤ C‖ut‖L2(Ω) + C‖f‖L2(Ω) + C‖∇w‖L2(Ω) + C‖wt‖L2(Ω) + C‖g‖L2(Ω)

+ C‖∇u‖L2(Ω) + C‖∇u‖L2(Ω)‖∇w‖2L2(Ω) + C‖∇u‖3L2(Ω). (3.20)

By applying (3.8)-(3.9) and (2.2), Hölder inequality and Poincaré inequality, we get

‖utt‖(H1
div(Ω))′ ≤ C‖∇ut‖L2(Ω) + C‖∇ut‖L2(Ω)‖∇u‖L2(Ω)

+ C‖ft‖L2(Ω) + C‖wt‖L2(Ω), (3.21)

‖wtt‖(H−1(Ω)) ≤ C‖∇wt‖L2(Ω) + C‖gt‖L2(Ω) + C‖ut‖L2(Ω)

+ C‖∇ut‖L2(Ω)‖∇w‖L2(Ω) + C‖∇wt‖L2(Ω)‖∇u‖L2(Ω). (3.22)

Combining the inequalities (3.21) and (3.22), we have

‖utt‖
2
(H1

div(Ω))′ + ‖wtt‖
2
(H−1(Ω))

≤ C
(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

+ C
(

1 + ‖∇u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)

×
(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

. (3.23)
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Integrating time from 0 to t for the inequality (3.23), we conclude that

∫ T

0

(

‖utt‖
2
(H1

div(Ω))′ + ‖wtt‖
2
(H−1(Ω))

)

dt

≤ C

∫ T

0

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

dt

+ C

∫ T

0

(

1 + ‖∇u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt. (3.24)

A combination of (3.20) and (3.24), together with Theorems 3.2-3.3 and Hypothesis 2.1, implies

the desired result. �

Next, we will continue to bound the second order time derivatives of the solution, which are

useful for the subsequent error analysis.

Theorem 3.5. Suppose that Hypothesis 2.1-2.3 hold and let ν(t) = min(1, t). The solution

(u,w, p) of the problem (2.4)-(2.5) satisfies the estimates

sup
0≤t≤T

ν(t)
(

µ‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω)

)

+

∫ T

0

ν(t)
(

‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

)

dt

+

∫ T

0

ν(t)
(

‖ut‖
2
H2(Ω) + ‖wt‖

2
H2(Ω) + ‖pt‖

2
H1(Ω)

)

dt ≤ C. (3.25)

Proof. Taking (v, q) = (utt, 0) in (3.10) and ψ = wtt in (3.11) and adding these two

equations together, we can get

1

2

d

dt

(

(µ + µr)‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω)

)

+ ‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

+
1

2

d

dt

(

c2‖ divwt‖
2
L2(Ω) + 4µr‖wt‖

2
L2(Ω)

)

+ b(ut,u,utt) + b(u,ut,utt) + b(ut,w,wtt) + b(u,wt,wtt)

= (ft,utt) + (gt,wtt) + 2µr(curlwt,utt) + 2µr(curlut,wtt). (3.26)

By applying the Hölder inequality and the Young inequality and noticing (2.2), we obtain

|b(ut,u,utt)| ≤ ‖ut‖L6(Ω)‖∇u‖L3(Ω)‖utt‖L2(Ω)

≤ C‖∇ut‖L2(Ω)‖u‖H2(Ω)‖utt‖L2(Ω)

≤
1

8
‖utt‖

2
L2(Ω) + C‖u‖2H2(Ω)‖∇ut‖

2
L2(Ω),

|b(u,ut,utt)| ≤ ‖u‖L∞(Ω)‖∇ut‖L2(Ω)‖utt‖L2(Ω)

≤ C‖u‖H2(Ω)‖∇ut‖L2(Ω)‖utt‖L2(Ω)

≤
1

8
‖utt‖

2
L2(Ω) + C‖u‖2H2(Ω)‖∇ut‖

2
L2(Ω),

|b(ut,w,wtt)| ≤ ‖ut‖L6(Ω)‖∇w‖L3(Ω)‖wtt‖L2(Ω)

≤ C‖∇ut‖L2(Ω)‖w‖H2(Ω)‖wtt‖L2(Ω)

≤
1

8
‖wtt‖

2
L2(Ω) + C‖w‖2H2(Ω)‖∇ut‖

2
L2(Ω),
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|b(u,wt,wtt)| ≤ ‖u‖L∞(Ω)‖∇wt‖L2(Ω)‖wtt‖L2(Ω)

≤ C‖u‖H2(Ω)‖∇wt‖L2(Ω)‖wtt‖L2(Ω)

≤
1

8
‖wtt‖

2
L2(Ω) + C‖u‖2H2(Ω)‖∇wt‖

2
L2(Ω),

|(ft,utt) + (gt,wtt)| ≤
1

8

(

‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

)

+ C
(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

,

2µr |(curlwt,utt)| ≤
1

8
‖utt‖

2
L2(Ω) + C‖∇wt‖

2
L2(Ω),

2µr |(curlut,wtt)| ≤
1

8
‖wtt‖

2
L2(Ω) + C‖∇ut‖

2
L2(Ω).

Combining the above inequalities and (3.26), we conclude that

d

dt

(

(µ + µr)‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω)

)

+ ‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

+
d

dt

(

c2‖ divwt‖
2
L2(Ω) + 4µr‖wt‖

2
L2(Ω)

)

≤ C
(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

+ C
(

1 + ‖u‖2H2(Ω) + ‖w‖2H2(Ω)

)

×
(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

. (3.27)

Multiplying (3.27) by ν(t) and integrating time from 0 to t for the inequality, we have

ν(t)
(

µ‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω)

)

+

∫ t

0

ν(t)
(

‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

)

dt

≤ C

∫ T

0

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω) + ‖∇ut‖

2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt

+ C

∫ t

0

ν(t)
(

1 + ‖u‖2H2(Ω) + ‖w‖2H2(Ω)

)(

µ‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω)

)

dt. (3.28)

By employing Theorem 3.2, we conclude that

∫ T

0

(

1 + ‖u‖2H2(Ω) + ‖w‖2H2(Ω)

)

dt ≤ C. (3.29)

By applying Lemma 3.1, the inequality (3.29), Hypothesis 2.1 and Theorem 3.3 for the inequality

(3.28), we obtain

sup
0≤t≤T

ν(t)
(

µ‖∇ut‖
2
L2(Ω) + c1‖∇wt‖

2
L2(Ω)

)

+

∫ T

0

ν(t)
(

‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

)

dt ≤ C. (3.30)

According to (3.10)-(3.12), we get that (ut, pt,wt) satisfy the following system:























− (µ + µr)∆ut + ∇pt = −utt − (ut · ∇)u− (u · ∇)ut

+ ft + 2µrcurlwt, divut = 0,

− c1∆wt − c2∇ divwt = −wtt − (ut · ∇)w − (u · ∇)wt

− 4µrwt + gt + 2µrcurlut
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in D′((0, T ) × Ω). By applying the Hölder inequality, Hypothesis 2.3 and (2.2), we obtain

‖ut‖H2(Ω) + ‖pt‖H1(Ω) ≤ C
(

‖utt‖L2(Ω) + ‖ft‖L2(Ω)

)

+ C
(

1 + ‖u‖H2(Ω)

)

×
(

‖∇ut‖L2(Ω) + ‖∇wt‖L2(Ω)

)

, (3.31)

‖wt‖H2(Ω) + ‖ divwt‖H1(Ω) ≤ C
(

‖wtt‖L2(Ω) + ‖gt‖L2(Ω)

)

+ C
(

1 + ‖u‖H2(Ω) + ‖w‖H2(Ω)

)

×
(

‖∇ut‖L2(Ω) + ‖∇wt‖L2(Ω)

)

. (3.32)

Combining (3.31) and (3.32), we can show

‖ut‖
2
H2(Ω) + ‖pt‖

2
H1(Ω) + ‖wt‖

2
H2(Ω)

≤ C
(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω) + ‖utt‖

2
L2(Ω) + ‖wtt‖

2
L2(Ω)

)

+ C(1 + ‖u‖2H2(Ω) + ‖w‖2H2(Ω))
(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

. (3.33)

Multiplying (3.33) by ν(t) and integrating time from 0 to T for the inequality, we have
∫ T

0

ν(t)
(

‖ut‖
2
H2(Ω) + ‖pt‖

2
H1(Ω) + ‖wt‖

2
H2(Ω)

)

dt

≤ C

∫ T

0

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

dt + C

∫ T

0

ν(t)
(

‖utt‖
2
L2(Ω) + ‖wtt‖

2
L2(Ω)

)

dt

+ C

∫ T

0

(

1 + ‖u‖H2(Ω) + ‖w‖H2(Ω)

) (

‖∇ut‖L2(Ω) + ‖∇wt‖L2(Ω)

)

dt. (3.34)

By applying Hypothesis 2.1, (3.32), Theorems 3.3 and 3.4 for (3.34), we get
∫ T

0

ν(t)
(

‖ut‖
2
H2(Ω) + ‖pt‖

2
H1(Ω) + ‖wt‖

2
H2(Ω)

)

dt ≤ C. (3.35)

Combining (3.31) and (3.35), we can show the inequality (3.25). This completes the proof of

Theorem 3.5. �

We will study numerical discretizations for the problem (2.4)-(2.5) in next sections. To this

end, we need to prove a uniqueness result of the system.

Theorem 3.6. Suppose that Hypothesis 2.1-2.2 hold and w ∈ L4(0, T ;H1
0(Ω)), then there

exists a unique solution

u ∈ L2(0, T ;H1
div(Ω)) ∩ L∞(0, T ;L2

div(Ω)),

p ∈ L2(0, T ;L2(Ω)),

w ∈ L2(0, T ;H1
0(Ω)) ∩ L∞(0, T ;L2(Ω))

for the problem (2.4)-(2.5).

Proof. According to Theorem 3.1, we have the solution of the problem (2.4)-(2.5) satisfy

the energy estimate (3.1). Next, we establish the uniqueness of solution for the problem (2.4)-

(2.5). Let (u1, p1,w1) and (u2, p2,w2) be two solutions of the system (2.4)-(2.5) with the same

initial data (u0,w0). Let (ue, pe,we) = (u2 − u1, p2 − p1,w2 −w1), we conclude that

(∂tue,v) + b(u2,ue,v) + b(ue,u1,v) + (µ + µr)a(ue,v)

− d(v, pe) + d(ue, q) = 2µr(curlwe,v), (3.36)

(∂twe,ψ) + b(u2,we,ψ) + b(ue,w1,ψ) + c1a(we,ψ)

+ c2(divwe, divψ) + 4µr(we,ψ) = 2µr(curlue,ψ) (3.37)

for any (v, q,ψ) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω).



Convergence and Error Estimates of a Fully Discrete Finite Element Method 83

Taking (v, q) = (ue, pe) in (3.36) and ψ = we in (3.37) and adding together, we can show

1

2

d

dt

(

‖ue‖
2
L2(Ω) + ‖we‖

2
L2(Ω)

)

+ µ‖∇ue‖
2
L2(Ω)

+ c1‖∇we‖
2
L2(Ω) + c2‖ divwe‖

2
L2(Ω)

+ µr‖curlue − 2we‖
2
L2(Ω) + b(ue,u1,ue) + b(ue,w1,we) = 0. (3.38)

By applying the Hölder inequality, the interpolation inequality and the Young inequality, we

have

|b(ue,u1,ue)| ≤
µ

4
‖∇ue‖

2
L2(Ω) + C‖∇u1‖

4
L2(Ω)‖ue‖

2
L2(Ω),

|b(ue,w1,we)| ≤
c1
2
‖∇we‖

2
L2(Ω) +

µ

4
‖∇ue‖

2
L2(Ω) + C‖∇w1‖

4
L2(Ω)‖we‖

2
L2(Ω).

Combining the above inequalities and (3.38), we get

d

dt

(

‖ue‖
2
L2(Ω) + ‖we‖

2
L2(Ω)

)

+ µ‖∇ue‖
2
L2(Ω) + c1‖∇we‖

2
L2(Ω)

≤ C
(

‖∇u1‖
4
L2(Ω) + ‖∇w1‖

4
L2(Ω)

)(

‖ue‖
2
L2(Ω) + ‖we‖

2
L2(Ω)

)

. (3.39)

Integrating time from 0 to t for the inequality (3.39), we can show

‖ue(t)‖
2
L2(Ω) + ‖we(t)‖

2
L2(Ω) +

∫ t

0

(

µ‖∇ue‖
2
L2(Ω) + c1‖∇we‖

2
L2(Ω)

)

dt

≤ ‖ue(0)‖2L2(Ω) + ‖we(0)‖2L2(Ω)

+ C

∫ t

0

(

‖∇u1‖
4
L2(Ω) + ‖∇w1‖

4
L2(Ω)

)(

‖ue‖
2
L2(Ω) + ‖we‖

2
L2(Ω)

)

dt. (3.40)

By employing Lemma 3.1 for the inequality (3.40) and using the initial data (ue(0),we(0)) =

(0,0) and u1,w1 ∈ L4(0, T ;W 1,2(Ω)), we obtain

‖ue‖
2
L2(Ω) + ‖we‖

2
L2(Ω) = 0,

which implies that (ue,we) = (0,0). Taking (ue,we) = (0,0) in (3.36), we can derive d(v, pe) =

0. By applying the inf-sup condition, we have ‖pe‖L2(Ω) = 0, which implies that pe = 0, we

completes the proof. �

4. A First-Order Euler Semi-Implicit Time-Discrete Scheme

In this section, we propose the Euler semi-implicit time-discrete scheme for the problem

(1.1)-(1.5). Based on the priori estimates proved in Section 3, we establish L2 and H1 error

estimates for the time discrete of the microstructure systems (1.1)-(1.5).

4.1. Time discretization

Let N be a fixed integer number and 0 = t0 < t1 < · · · < tN = T be a uniform partition of

[0, T ] with time-step size τ = T/N (in general, the time-step size τ < 1). Moreover, tn = nτ

denoted the discrete time points and vn is the approximation value of the function value v at

time tn for 0 ≤ n ≤ N . For convenience, we write vn = v0 for any n < 0. Finally, we define
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the notation dtv
n = (vn − vn−1)/τ for n ≥ 1, d2tv

n = (vn − 2vn−1 + vn−2)/τ2 for n ≥ 2. It is

easy check that dtv
n = 0 for n ≤ 0.

We initialize the scheme by (u0,w0, p0) = (u0,w0, p0), then the Euler semi-implicit scheme

of the problem (1.1)-(1.5) is given by: Find (un, pn,wn) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω) such that

(dtu
n,v) + b(un−1,un,v) + (µ + µr)a(un,v) − d(v, pn) + d(un, q)

= (fn,v) + 2µr(curlwn−1,v), (4.1)

(dtw
n,ψ) + b(un−1,wn,ψ) + c1a(wn,ψ) + c2(divwn, divψ) + 4µr(w

n,ψ)

= (gn,ψ) + 2µr(curlu
n,ψ) (4.2)

for any (v, q,ψ) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω) with 1 ≤ n ≤ N , where

fn :=
1

τ

∫ tn

tn−1

f(t)dt, gn :=
1

τ

∫ tn

tn−1

g(t)dt.

Similarly, we can eliminate the pressure p under the condition that un ∈H1
div(Ω) and the test

function v ∈ H1
div(Ω). Obviously, we can show the solution (un,wn) satisfies the following

weak formulation: Find (un,wn) ∈H1
div(Ω) ×H1

0 (Ω) such that

(dtu
n,v) + b(un−1,un,v) + (µ + µr)a(un,v) = (fn,v) + 2µr(curlwn−1,v), (4.3)

(dtw
n,ψ) + b(un−1,wn,ψ) + c1a(wn,ψ) + c2(divwn, divψ) + 4µr(w

n,ψ)

= (gn,ψ) + 2µr(curlu
n,ψ) (4.4)

for any (v,ψ) ∈H1
div(Ω) ×H1

0 (Ω) with 1 ≤ n ≤ N .

In this paper, we need the variation counterpart of the discrete Grönwall lemma (see, e.g.,

remark to Lemma 5.1 in [18]).

Lemma 4.1. Let C0, τ, an, bn, cn and dn be non-negative numbers with n ≥ 0 such that

am + τ

m
∑

n=0

bn ≤ τ

m−1
∑

n=0

dnan + τ

m
∑

n=0

cn + C0, ∀m ≥ 0,

then

am + τ

m
∑

n=0

bn ≤ exp

(

τ

m−1
∑

n=0

dn

)(

τ

m
∑

n=0

cn + C0

)

, ∀m ≥ 0.

The following theorem give the discrete energy estimate for the time discrete scheme.

Theorem 4.1. Suppose that Hypothesis 2.1 holds. For any 1 ≤ m ≤ N , the solution (un,wn, pn)

of the problem (4.1)-(4.2) satisfies the discrete energy estimate

‖um‖2L2(Ω) + ‖wm‖2L2(Ω) + τ

m
∑

n=1

(

τ‖dtu
n‖2L2(Ω) + τ‖dtw

n‖2L2(Ω)

)

+ τ

m
∑

n=1

(

µ‖∇un‖2L2(Ω) + c1‖∇w
n‖2L2(Ω)

)

≤ C. (4.5)
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Proof. Taking (v, q) = 2τ(un, pn) in (4.1), ψ = 2τwn in (4.2) and adding the two equations,

by applying (2.1) and (2.3), the equality 2a(a− b) = |a|
2
− |b|

2
+ |a− b|

2
, we obtain

‖un‖2L2(Ω) + (1 + 8τµr)‖wn‖2L2(Ω) + τ2‖dtu
n‖2L2(Ω) + τ2‖dtw

n‖2L2(Ω)

+ 2τ(µ + µr)‖∇u
n‖2L2(Ω) + 2c1τ‖∇w

n‖2L2(Ω) + 2c2τ‖ divwn‖2L2(Ω)

= ‖un−1‖2L2(Ω) + ‖wn−1‖2L2(Ω) + 2τ(fn,un) + 2τ(gn,wn)

+ 4τµr(wn−1, curlun) + 4τµr(curlun,wn). (4.6)

Employing the Hölder inequality, the Young inequality, the Poincaré inequality and (2.2), we

have

2 |(fn,un)| ≤ µ‖∇un‖2L2(Ω) +
C

τ

∫ tn

tn−1

‖f‖2L2(Ω)dt,

2 |(gn,wn)| ≤ c1‖∇w
n‖2L2(Ω) +

C

τ

∫ tn

tn−1

‖g‖2L2(Ω)dt,

4µr

∣

∣(wn−1, curlun)
∣

∣ ≤ µr‖∇u
n‖2L2(Ω) + 4µr‖w

n−1‖2L2(Ω),

4µr |(w
n, curlun)| ≤ µr‖∇u

n‖2L2(Ω) + 4µr‖w
n‖2L2(Ω).

Combining the above inequalities and (4.6), we can show

‖un‖2L2(Ω) + (1 + 4τµr)‖wn‖2L2(Ω) + τ2‖dtu
n‖2L2(Ω)

+ τ2‖dtw
n‖2L2(Ω) + τµ‖∇un‖2L2(Ω) + c1τ‖∇w

n‖2L2(Ω)

≤ ‖un−1‖2L2(Ω) + (1 + 4τµr)‖wn−1‖2L2(Ω) + C

∫ tn

tn−1

(

‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)

dt (4.7)

for all 1 ≤ n ≤ N . Summing (4.7) with respect to n from n = 1 to n = m gives

‖um‖2L2(Ω) + (1 + 4τµr)‖wm‖2L2(Ω) + τ

m
∑

n=1

(

τ‖dtu
n‖2L2(Ω) + τ‖dtw

n‖2L2(Ω)

)

+ τ

m
∑

n=1

(

µ‖∇un‖2L2(Ω) + c1‖∇w
n‖2L2(Ω)

)

≤ ‖u0‖
2
L2(Ω) + (1 + 4τµr)‖w0‖

2
L2(Ω) + C

(

‖f‖2L2(0,T ;L2(Ω)) + ‖g‖2L(0,T ;L2(Ω))

)

(4.8)

for all 1 ≤ m ≤ N .

By applying Hypothesis 2.1 for the inequality (4.8), we can show the energy estimate (4.5).

The proof is complete. �

4.2. Error estimates: time semi-discrete

The main aim of this section is to give the L2 −H1 error estimates for the time-discrete

solution (un,wn, pn). To this end, we first derive an error equation for the discrete scheme

developed in last section. Taking t = tn in both (2.4) and (2.5) and by applying Taylor

formula, we have

(dtu(tn),v) + b(u(tn),u(tn),v) + (µ + µr)a(u(tn),v) − d(v, p(tn)) + d(u(tn), q)

= (f(tn),v) + 2µr(curlw(tn),v) − (∂ttu
n,v), (4.9)
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(dtw(tn),ψ) + b(u(tn),w(tn),ψ) + c1a(w(tn),ψ) + c2(divw(tn), divψ) + 4µr(w(tn),ψ)

= (g(tn),ψ) + 2µr(curlu(tn),ψ) − (∂ttw
n,ψ) (4.10)

for all (v, q,ψ) ∈H1
0 (Ω)×L2

0(Ω)×H1
0 (Ω) with 1 ≤ n ≤ N , where ∂ttu

n and ∂ttw
n are defined

by

∂ttu
n :=

1

τ

∫ tn

tn−1

(t− tn−1)uttdt, ∂ttw
n :=

1

τ

∫ tn

tn−1

(t− tn−1)wttdt.

Subtracting (4.1) and (4.2) from (4.9) and (4.10), respectively, and setting Rn
u = u(tn)−un,

Rn
w = w(tn) −wn and Rn

p = p(tn) − pn, we can show

(dtR
n
u,v) + b(Rn−1

u ,u(tn),v) + b(un−1,Rn
u,v) + (µ + µr)a(Rn

u,v)

− d(v,Rn
p ) + d(Rn

u, q) − 2µr(curlR
n−1
w ,v) = (En

1 ,v), (4.11)

(dtR
n
w,ψ) + b(Rn−1

u ,w(tn),ψ) + b(un−1,Rn
w,ψ) + c1a(Rn

w,ψ)

+ c2(divRn
w, divψ) + 4µr(R

n
w,ψ) − 2µr(curlR

n
u,ψ) = (En

2 ,ψ) (4.12)

for all (v, q,ψ) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω), where En

1 and En
2 are given by

(En
1 ,v) = (∂tf

n,v) − (∂ttu
n,v) − b(∂tu

n,u(tn),v) + 2µr(curl ∂tw
n,v), (4.13)

(En
2 ,ψ) = (∂tg

n,ψ) − (∂ttw
n,ψ) − b(∂tu

n,w(tn),ψ), (4.14)

and ∂tu
n, ∂tw

n, ∂tf and ∂tg are given by

∂tu
n :=

∫ tn

tn−1

utdt, ∂tf
n :=

1

τ

∫ tn

tn−1

(t− tn−1)ftdt,

∂tw
n :=

∫ tn

tn−1

wtdt, ∂tg
n :=

1

τ

∫ tn

tn−1

(t− tn−1)gtdt.

To derive an error estimates for the time discrete solution (un,wn, pn), we need to give an

estimates for the residual errors En
1 and En

2 .

Lemma 4.2. Suppose that Hypothesis 2.1-2.3 hold. Then En
1 and En

2 satisfy the following

estimates:

τ

m
∑

n=1

(

‖En
1 ‖

2
(H1

div(Ω))′ + ‖En
2 ‖

2
(H−1(Ω))

)

≤ Cτ2, ∀ 1 ≤ m ≤ N, (4.15)

τ
m
∑

n=1

ν(tn)
(

‖En
1 ‖

2
L2(Ω) + ‖En

2 ‖
2
L2(Ω)

)

≤ Cτ2, ∀ 1 ≤ m ≤ N. (4.16)

Proof. By applying (4.13)-(4.14), H1
div(Ω) ⊂H1

0 (Ω), the Hölder inequality and (2.2), we

obtain

‖En
1 ‖

2
(H1

div(Ω))′ ≤ Cτ
1
2 ‖ft‖L2(tn−1,tn;L2(Ω)) + Cτ

1
2 ‖utt‖L2(tn−1,tn;(H1

div
(Ω))′)

+ Cτ
1
2 ‖∇u(tn)‖L2(Ω)‖∇ut‖L2(tn−1,tn;L2(Ω))

+ Cτ
1
2 ‖∇wt‖L2(tn−1,tn;L2(Ω)), (4.17)

‖En
2 ‖(H−1(Ω)) ≤ Cτ

1
2 ‖gt‖L2(tn−1,tn;L2(Ω)) + Cτ

1
2 ‖wtt‖L2(tn−1,tn;(H1

0 (Ω))′)

+ Cτ
1
2 ‖∇w(tn)‖L2(Ω)‖∇ut‖L2(tn−1,tn;L2(Ω)). (4.18)
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Combining (4.17)-(4.18) and using Theorem 3.2, we conclude that

τ
(

‖En
1 ‖

2
(H1

div(Ω))′ + ‖En
2 ‖

2
(H−1(Ω))

)

≤ Cτ2
∫ tn

tn−1

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω)

)

dt

+ Cτ2
∫ tn

tn−1

(

‖utt‖
2
(H1

div(Ω))′ + ‖wtt‖
2
(H−1(Ω))

)

dt

+ Cτ2
∫ tn

tn−1

(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt (4.19)

for all 1 ≤ n ≤ N . Summing (4.19) with respect to n from n = 1 to n = m and by applying

Hypothesis 2.1 and Theorems 3.2-3.4, we have the estimate (4.15). Similarly, by applying

(4.13)-(4.14) and the Hölder inequality, we get

‖En
1 ‖L2(Ω) ≤ Cτ

1
2 ‖ft‖L2(tn−1,tn;L2(Ω)) + Cτ

1
2 ‖utt‖L2(tn−1,tn;L2(Ω))

+ Cτ
1
2 ‖u(tn)‖H2(Ω)‖∇ut‖L2(tn−1,tn;L2(Ω))

+ Cτ
1
2 ‖∇wt‖L2(tn−1,tn;L2(Ω)), (4.20)

‖En
2 ‖L2(Ω) ≤ Cτ

1
2 ‖gt‖L2(tn−1,tn;L2(Ω)) + Cτ

1
2 ‖wtt‖L2(tn−1,tn;L2(Ω))

+ Cτ
1
2 ‖w(tn)‖H2(Ω)‖∇ut‖L2(tn−1,tn;L2(Ω)). (4.21)

Combining (4.20) and (4.21), we obtain

τν(tn)
(

‖En
1 ‖

2
L2(Ω) + ‖En

2 ‖
2
L2(Ω)

)

≤ Cτ2
(

1 + ‖u(tn)‖2H2(Ω) + ‖w(tn)‖2H2(Ω)

)

∫ tn

tn−1

(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt

+ Cτ2
∫ tn

tn−1

(

‖ft‖
2
L2(Ω) + ‖gt‖

2
L2(Ω) + ν(tn)‖utt‖

2
L2(Ω) + ν(tn)‖wtt‖

2
L2(Ω)

)

dt (4.22)

for all 1 ≤ n ≤ N . Summing (4.22) with respect to n from n = 1 to n = m and by apply-

ing Hypothesis 2.1 and Theorems 3.3-3.5, we get the required estimate (4.16). The proof is

complete. �

In the remainder of this section, we will prove the error estimates for the time-discrete

scheme.

Theorem 4.2. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un,

wn, pn) of the problem (4.1)-(4.2) satisfies the error estimate

sup
1≤n≤m

(

‖u(tn) − un‖2L2(Ω) + ‖w(tn) −wn‖2L2(Ω)

)

(4.23)

+ τ

m
∑

n=1

(

‖∇(u(tn) − un)‖2L2(Ω) + ‖∇(w(tn) −wn)‖2L2(Ω)

)

≤ Cτ2.

Proof. Taking (v, q) = 2τ(Rn
u,R

n
p ) in (4.11) and ψ = 2τRn

w in (4.12) and adding together,

by applying (2.3) and the equality

2a(a− b) = |a|2 − |b|2 + |a− b|2,
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we have

‖Rn
u‖

2
L2(Ω) + (1 + 8µrτ)‖Rn

w‖
2
L2(Ω) + τ2‖dtR

n
u‖

2
L2(Ω) + τ2‖dtR

n
w‖

2
L2(Ω)

+ 2τ(µ + µr)‖∇Rn
u‖

2
L2(Ω) + 2c1τ‖∇Rn

w‖
2
L2(Ω) + 2c2τ‖ divRn

w‖
2
L2(Ω)

+ 2τb(Rn−1
u ,u(tn),Rn

u) + 2τb(Rn−1
u ,w(tn),Rn

w)

− 4τµr(curlRn−1
w ,Rn

u) − 4τµr(curlRn
u,R

n
w)

= ‖Rn−1
u ‖2L2(Ω) + ‖Rn−1

w ‖2L2(Ω) + 2τ(En
1 ,R

n
u) + 2τ(En

2 ,R
n
w). (4.24)

By applying the Hölder and Young inequalities, Rn
u ∈H1

div(Ω) and (2.1)-(2.2), we obtain

2
∣

∣b(Rn−1
u ,u(tn),Rn

u)
∣

∣ ≤
µ

2
‖∇Rn

u‖
2
L2(Ω) + C‖u(tn)‖2H2(Ω)‖R

n−1
u ‖2L2(Ω),

2
∣

∣b(Rn−1
u ,w(tn),Rn

w)
∣

∣ ≤
c1
2
‖∇Rn

w‖
2
L2(Ω) + C‖w(tn)‖2H2(Ω)‖R

n−1
u ‖2L2(Ω),

4µr

∣

∣(curlRn−1
w ,Rn

u)
∣

∣ ≤ 4µr‖R
n−1
w ‖2L2(Ω) + µr‖∇Rn

u‖
2
L2(Ω),

4µr |(curlR
n
u,R

n
w)| ≤ 4µr‖R

n
w‖

2
L2(Ω) + µr‖∇Rn

u‖
2
L2(Ω),

2 |(En
1 ,R

n
u)| ≤

µ

2
‖∇Rn

u‖
2
L2(Ω) + C‖En

1 ‖
2
(H1

div(Ω))′ ,

2 |(En
2 ,R

n
w)| ≤

c1
2
‖∇Rn

w‖
2
L2(Ω) + C‖En

2 ‖
2
(H−1(Ω)).

Combining the above inequalities and (4.24), we can show

‖Rn
u‖

2
L2(Ω) + (1 + 4µrτ)‖Rn

w‖
2
L2(Ω) + µτ‖∇Rn

u‖
2
L2(Ω) + c1τ‖∇Rn

w‖
2
L2(Ω)

≤ ‖Rn−1
u ‖2L2(Ω) + (1 + 4µrτ)‖Rn−1

w ‖2L2(Ω) + Cτ
(

‖En
1 ‖

2
(H1

div(Ω))′ + ‖En
2 ‖

2
(H−1(Ω))

)

+ Cτ
(

‖u(tn)‖2H2(Ω) + ‖w(tn)‖2H2(Ω)

)(

‖Rn−1
u ‖2L2(Ω) + ‖Rn−1

w ‖2L2(Ω)

)

(4.25)

for all 1 ≤ n ≤ N . Summing (4.25) with respect to n from n = 1 to n = m and by applying

Lemma 4.2 and noticing (R0
u,R

0
w) = (0,0), we have

‖Rm
u ‖

2
L2(Ω) + (1 + 4µrτ)‖Rm

w‖
2
L2(Ω) + τ

m
∑

n=1

(

µ‖∇Rn
u‖

2
L2(Ω) + c1‖∇Rn

w‖
2
L2(Ω)

)

≤ Cτ

m−1
∑

n=0

(

‖u(tn+1)‖2H2(Ω) + ‖w(tn+1)‖2H2(Ω)

)(

‖Rn
u‖

2
L2(Ω) + ‖Rn

w‖
2
L2(Ω)

)

+ Cτ

m
∑

n=1

(

‖En
1 ‖

2
(H1

div(Ω))′ + ‖En
2 ‖

2
(H−1(Ω))

)

≤ τ

m−1
∑

n=0

dn

(

‖Rn
u‖

2
L2(Ω) + (1 + 4µrτ)‖Rn

w‖
2
L2(Ω)

)

+ Cτ2, (4.26)

where dn = C(‖u(tn+1)‖2
H2(Ω) + ‖w(tn+1)‖2

H2(Ω)).

By applying Lemma 4.1 and Theorem 3.4 for the inequality (4.26), we obtain

‖Rm
u ‖

2
L2(Ω)+‖Rm

w‖
2
L2(Ω) + τ

m
∑

n=1

(

µ‖∇Rn
u‖

2
L2(Ω) + c1‖∇Rn

w‖
2
L2(Ω)

)

≤ Cτ2 exp

(

τ

m−1
∑

n=0

dn

)

≤ Cτ2

for all 1 ≤ m ≤ N . The proof is complete. �
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Theorem 4.3. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution

(un,wn, pn) of the problem (4.1)-(4.2) satisfies the error estimate

sup
1≤n≤m

ν(tn)
(

‖∇(u(tn) − un)‖2L2(Ω) + ‖∇(w(tn) −wn)‖2L2(Ω)

)

+ τ

m
∑

n=1

ν(tn)
(

‖dt(u(tn) − un)‖2L2(Ω) + ‖dt(w(tn) −wn)‖2L2(Ω)

)

≤ Cτ2. (4.27)

Proof. Taking (v, q) = 2τ(dtR
n
u, 0) in (4.11) and ψ = 2τdtR

n
u in (4.12) and adding

together, by applying the equality

2a(a− b) = |a|
2
− |b|

2
+ |a− b|

2
,

we have

(µ + µr)
(

‖∇Rn
u‖

2
L2(Ω) − ‖∇Rn−1

u ‖2L2(Ω) + ‖∇(Rn
u −Rn−1

u )‖2L2(Ω)

)

+ c1

(

‖∇Rn
w‖

2
L2(Ω) − ‖∇Rn−1

w ‖2L2(Ω) + ‖∇(Rn
w −Rn−1

w )‖2L2(Ω)

)

+ c2

(

‖ divRn
w‖

2
L2(Ω) − ‖ divRn−1

w ‖2L2(Ω) + ‖ div(Rn
w −Rn−1

w )‖2L2(Ω)

)

+ 8µr

(

‖Rn
w‖

2
L2(Ω) − ‖Rn−1

w ‖2L2(Ω) + ‖(Rn
w −Rn−1

w )‖2L2(Ω)

)

+ 2τb
(

Rn−1
u ,u(tn), dtR

n
u

)

+ 2τb
(

u(tn−1),Rn−1
u , dtR

n
u

)

+ 2τb
(

Rn−1
u ,w(tn), dtR

n
w

)

+ 2τb
(

u(tn−1),Rn−1
w , dtR

n
w

)

− 2τb
(

Rn−1
u ,Rn

u, dtR
n
u

)

− 2τb
(

Rn−1
u ,Rn

w, dtR
n
u

)

+ 2τ‖dtR
n
u‖

2
L2(Ω) + 2τ‖dtR

n
w‖

2
L2(Ω)

− 4µrτ
(

curlRn−1
w , dtR

n
u

)

− 4µrτ (curlRn
u, dtR

n
w)

= 2τ(En
1 , dtR

n
u) + 2τ(En

2 , dtR
n
w). (4.28)

By applying the Hölder inequality, the Young inequality and (2.2), we can show

4µr

∣

∣(curlRn−1
w , dtR

n
u)
∣

∣ ≤
1

4
‖dtR

n
u‖

2
L2(Ω) + C‖∇Rn−1

w ‖2L2(Ω),

4µr |(curlR
n
u, dtR

n
w)| ≤

1

4
‖dtR

n
w‖

2
L2(Ω) + C‖∇Rn

u‖
2
L2(Ω),

2 |(En
1 , dtR

n
u)| ≤

1

4
‖dtR

n
u‖

2
L2(Ω) + C‖En

1 ‖
2
L2(Ω),

2 |(En
2 , dtR

n
w)| ≤

1

4
‖dtR

n
w‖

2
L2(Ω) + C‖En

2 ‖
2
L2(Ω),

2
∣

∣b(Rn−1
u ,u(tn), dtR

n
u)
∣

∣ ≤ 2‖Rn−1
u ‖L6(Ω)‖∇u(tn)‖L3(Ω)‖dtR

n
u‖L2(Ω)

≤
1

4
‖dtR

n
u‖

2
L2(Ω) + C‖u(tn)‖2H2(Ω)‖∇Rn−1

u ‖2L2(Ω),

2
∣

∣b(u(tn−1),Rn−1
u , dtR

n
u)
∣

∣ ≤ 2‖u(tn−1)‖L∞(Ω)‖∇Rn−1
u ‖L2(Ω)‖dtR

n
u‖L2(Ω)

≤
1

4
‖dtR

n
u‖

2
L2(Ω) + C‖u(tn−1)‖2H2(Ω)‖∇Rn−1

u ‖2L2(Ω),

2
∣

∣b(Rn−1
u ,Rn

u, dtR
n
u)
∣

∣ ≤ 2τ−1‖∇Rn−1
u ‖L2(Ω)‖∇Rn

u‖L2(Ω)‖∇(Rn
u −Rn−1

u )‖L2(Ω)

≤
µ + µr

2τ
‖∇(Rn

u −Rn−1
u )‖2L2(Ω) + Cτ−1‖∇Rn−1

u ‖2L2(Ω)‖∇Rn
u‖

2
L2(Ω),
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2
∣

∣b(Rn−1
u ,w(tn), dtR

n
w)
∣

∣ ≤ 2‖Rn−1
u ‖L6(Ω)‖∇w(tn)‖L3(Ω)‖dtR

n
w‖L2(Ω)

≤
1

4
‖dtR

n
w‖

2
L2(Ω) + C‖w(tn)‖2H2(Ω)‖∇Rn−1

u ‖2L2(Ω),

2
∣

∣b(u(tn−1),Rn−1
w , dtR

n
w)
∣

∣ ≤ 2‖u(tn−1)‖L∞(Ω)‖∇Rn−1
w ‖L2(Ω)‖dtR

n
w‖L2(Ω)

≤
1

4
‖dtR

n
w‖

2
L2(Ω) + C‖u(tn−1)‖2H2(Ω)‖∇Rn−1

w ‖2L2(Ω),

2
∣

∣b(Rn−1
u ,Rn

w, dtR
n
w)
∣

∣ ≤ 2τ−1‖∇Rn−1
u ‖L2(Ω)‖∇Rn

w‖L2(Ω)‖∇(Rn
w −Rn−1

w )‖L2(Ω)

≤
c1
2τ

‖∇(Rn
w −Rn−1

w )‖2L2(Ω) + Cτ−1‖∇Rn−1
u ‖2L2(Ω)‖∇Rn

w‖
2
L2(Ω).

Combining the above inequalities and (4.28) and by applying Theorem 3.4, we get

τ‖dtR
n
u‖

2
L2(Ω) + τ‖dtR

n
w‖

2
L2(Ω) + (µ + µr)

(

‖∇Rn
u‖

2
L2(Ω) − ‖∇Rn−1

u ‖2L2(Ω)

)

+ c1

(

‖∇Rn
w‖

2
L2(Ω) − ‖∇Rn−1

w ‖2L2(Ω)

)

+ 8µr

(

‖Rn
w‖

2
L2(Ω) − ‖Rn−1

w ‖2L2(Ω)

)

+ 2c2

(

‖ divRn
w‖

2
L2(Ω) − ‖ divRn−1

w ‖2L2(Ω)

)

≤ Cτ
(

‖En
1 ‖

2
L2(Ω) + ‖En

2 ‖
2
L2(Ω)

)

+ C
(

‖∇Rn−1
u ‖2L2(Ω) + ‖∇Rn−1

w ‖2L2(Ω)

)

×
(

‖∇Rn
u‖

2
L2(Ω) + ‖∇Rn

w‖
2
L2(Ω)

)

+ Cτ
(

‖∇Rn−1
u ‖2L2(Ω) + ‖∇Rn−1

w ‖2L2(Ω) + ‖∇Rn
u‖

2
L2(Ω) + ‖∇Rn

w‖
2
L2(Ω)

)

(4.29)

for all 1 ≤ n ≤ N . Multiplying the inequality (4.29) by ν(tn) and by applying ν(tn) ≤

ν(tn−1) + τ , we obtain

ν(tn)
(

‖dtR
n
u‖

2
L2(Ω) + ‖dtR

n
w‖

2
L2(Ω)

)

τ + ν(tn)
(

(µ + µr)‖∇Rn
u‖

2
L2(Ω) + c1‖∇Rn

w‖
2
L2(Ω)

)

− ν(tn−1)
(

(µ + µr)‖∇Rn−1
u ‖2L2(Ω) + c1‖∇Rn−1

w ‖2L2(Ω)

)

+ ν(tn)
(

2c2‖ divRn
w‖

2
L2(Ω) + 8µr‖R

n
w‖

2
L2(Ω)

)

− ν(tn−1)
(

2c2‖ divRn−1
w ‖2L2(Ω) + 8µr‖R

n−1
w ‖2L2(Ω)

)

≤ Cν(tn−1)
(

‖∇Rn−1
u ‖2L2(Ω) + ‖∇Rn−1

w ‖2L2(Ω)

)(

‖∇Rn
u‖

2
L2(Ω) + ‖∇Rn

w‖
2
L2(Ω)

)

+ Cτ
(

‖∇Rn−1
u ‖2L2(Ω) + ‖∇Rn−1

w ‖2L2(Ω) + ‖∇Rn
u‖

2
L2(Ω) + ‖∇Rn

w‖
2
L2(Ω)

)

+ Cν(tn)
(

‖En
1 ‖

2
L2(Ω) + ‖En

2 ‖
2
L2(Ω)

)

τ (4.30)

for all 1 ≤ n ≤ N .

Summing (4.30) with respect to n from n = 1 to n = m and by applying Lemma 4.2,

Theorem 4.2 and (R0
u,R

0
w) = (0,0), we have

τ

m
∑

n=0

ν(tn)
(

‖dtR
n
u‖

2
L2(Ω) + ‖dtR

n
w‖

2
L2(Ω)

)

+ ν(tm)
(

(µ + µr)‖∇Rm
u ‖

2
L2(Ω) + c1‖∇Rm

w‖
2
L2(Ω)

)

≤ τ

m−1
∑

n=0

dnν(tn)
(

(µ + µr)‖∇Rn
u‖

2
L2(Ω) + c1‖∇Rn

w‖
2
L2(Ω)

)

+ Cτ2, (4.31)

where dn = Cτ−1(‖∇Rn+1
u ‖2

L2(Ω) + ‖∇Rn+1
w ‖2

L2(Ω)).
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By applying Lemma 4.1 for the inequality (4.31), we obtain

τ

m
∑

n=0

ν(tn)
(

‖dtR
n
u‖

2
L2(Ω) + ‖dtR

n
w‖

2
L2(Ω)

)

+ ν(tm)
(

(µ + µr)‖∇Rm
u ‖

2
L2(Ω) + c1‖∇Rm

w‖
2
L2(Ω)

)

≤ Cτ2 exp

(

τ

m−1
∑

n=0

dn

)

. (4.32)

By applying Theorem 4.2 for the inequality (4.32), we have (4.27). The proof is complete. �

Theorem 4.4. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un,

wn, pn) of the problem (4.1)-(4.2) satisfies the error estimate

τ

m
∑

n=1

ν(tn)‖p(tn) − pn‖2L2(Ω) ≤ Cτ2. (4.33)

Proof. By applying the inf-sup condition, the Hölder inequality and (2.2), the Eq. (4.11),

we have

β‖Rn
p‖L2(Ω) ≤ sup

v∈H1
0 (Ω)

d(v,Rn
p )

‖∇v‖L2(Ω)

≤ C
(

‖dtR
n
u‖L2(Ω)+‖∇Rn−1

u ‖L2(Ω)‖∇u(tn)‖L2(Ω)

)

+ C‖∇un−1‖L2(Ω)‖∇Rn
u‖L2(Ω)

+ C
(

‖∇Rn
u‖L2(Ω) + ‖∇Rn−1

w ‖L2(Ω) + ‖En
1 ‖L2(Ω)

)

. (4.34)

Squaring this identities (4.34) and multiplying by ν(tn)τ , we can show

ν(tn)‖Rn
p‖

2
L2(Ω)τ ≤ C

(

ν(tn)‖dtR
n
u‖

2
L2(Ω)τ + ‖∇Rn−1

u ‖2L2(Ω)‖∇u(tn)‖2L2(Ω)τ
)

+ C
(

‖∇un−1‖2L2(Ω)ν(tn)‖∇Rn
u‖

2
L2(Ω)τ + ‖∇Rn

u‖
2
L2(Ω)τ

)

+ C
(

‖∇Rn−1
w ‖2L2(Ω)τ + ν(tn)‖En

1 ‖
2
L2(Ω)τ

)

. (4.35)

Summing (4.35) with respect to n from n = 1 to n = m and by applying Theorems 3.2, 4.3 and

(R0
u,R

0
w) = (0,0), we obtain

τ

m
∑

n=1

ν(tn)‖Rn
p‖

2
L2(Ω) ≤ C

(

τ

m
∑

n=1

ν(tn)‖dtR
n
u‖

2
L2(Ω) + τ

m
∑

n=1

ν(tn)‖En
1 ‖

2
L2(Ω)

)

(4.36)

+ C

(

τ3
m−1
∑

n=0

‖∇un‖2L2(Ω) + τ

m
∑

n=1

(

‖∇Rn
u‖

2
L2(Ω) + ‖∇Rn

w‖
2
L2(Ω)

)

)

.

By applying Theorems 4.1-4.3, Lemma 4.2 and Hypothesis 2.1 for the inequality (4.36), we have

(4.33). The proof is complete. �

5. Regularity Results for the Time-Discrete Solutions

In this section, we establish some regularity results for the time-discrete solution (un,wn, pn).

In addition to their own theoretical significance, these regularity results are necessary for the

error estimate results of the fully discrete Euler semi-implicit scheme.
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We first give a priori estimates for the maximal H1 norm of (un,wn) and the maximal L2

norm of (dtu
n, dtw

n).

Theorem 5.1. Suppose that Hypothesis 2.1-2.3 hold. The solution (un,wn, pn) of the problem

(4.1)-(4.2) satisfies the following estimate:

sup
1≤n≤N

(

‖∇un‖2L2(Ω) + ‖∇wn‖2L2(Ω)

)

+ sup
1≤n≤N

(

‖dtu
n‖2L2(Ω) + ‖dtw

n‖2L2(Ω)

)

≤ C. (5.1)

Proof. By applying the triangle inequality and (a+ b)2 ≤ 2(a2 + b2), Theorem 4.3, we have

‖∇un‖2L2(Ω) ≤ 2‖∇u(tn)‖2L2(Ω) + 2‖∇(u(tn) − un)‖2L2(Ω)

≤ 2‖∇u(tn)‖2L2(Ω) + Cν(tn)−1τ2, (5.2)

‖∇wn‖2L2(Ω) ≤ 2‖∇w(tn)‖2L2(Ω) + 2‖∇(w(tn) −wn)‖2L2(Ω)

≤ 2‖∇w(tn)‖2L2(Ω) + Cν(tn)−1τ2 (5.3)

for all 1 ≤ n ≤ N .

Adding (5.2) and (5.3), and by applying Theorem 3.2 and the inequality ν(tn)−1τ2 ≤ C, we

obtain

‖∇un‖2L2(Ω) + ‖∇wn‖2L2(Ω) ≤ C (5.4)

for any 1 ≤ n ≤ N . Similarly, by applying the triangle inequality and (a + b)2 ≤ 2(a2 + b2),

Theorem 4.3, we can show

‖dtu
n‖2L2(Ω) ≤ 2‖dtu(tn)‖2L2(Ω) + 2‖dt(u(tn) − un)‖2L2(Ω)

≤ 2‖dtu(tn)‖2L2(Ω) + Cν(tn)−1τ, (5.5)

‖dtw
n‖2L2(Ω) ≤ 2‖dtw(tn)‖2L2(Ω) + 2‖dt(w(tn) −wn)‖2L2(Ω)

≤ 2‖dtw(tn)‖2L2(Ω) + Cν(tn)−1τ (5.6)

for all 1 ≤ n ≤ N . Adding (5.5) and (5.6) and by applying Theorem 3.3 and ν(tn)−1τ ≤ C, we

conclude that

‖dtu
n‖2L2(Ω) + ‖dtw

n‖2L2(Ω)

≤
2

τ

∫ tn

tn−1

(

‖∂tu‖
2
L2(Ω) + ‖∂tw‖2L2(Ω)

)

ds + Cν(tn)−1τ

≤ ‖∂tu‖
2
L∞(0, T ;L2(Ω)) + ‖∂tw‖2L∞(0, T ;L2(Ω)) + C ≤ C (5.7)

for all 1 ≤ n ≤ N . Combining the inequality (5.4) and (5.7), we have (5.1). The proof is

complete. �

In next step, we give a priori estimates for the maximal H2 norm of (un,wn) and the

maximal H1 norm of pn.

Theorem 5.2. Suppose that Hypothesis 2.1-2.3 hold. The solution (un,wn, pn) of the problem

(4.1)-(4.2) satisfies the following estimate:

sup
1≤n≤N

(

‖un‖2H2(Ω) + ‖wn‖2H2(Ω) + ‖pn‖2H1(Ω)

)

≤ C. (5.8)
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Proof. According to (4.1) and (4.2), we can show (un, p,wn) satisfy the following system:










dtu
n + (un−1 · ∇)un − (µ + µr)∆un + ∇pn = fn + 2µrcurlw

n−1,

divun = 0,

dtw
n + (un−1 · ∇)wn − c1∆wn − c2∇ divwn + 4µrw

n = gn + 2µrcurlu
n

in D′((0, T ) × Ω).

By applying the Hölder inequality and the Young inequality, (2.2) and (2.8), Hypothesis 2.3,

we conclude that

‖un‖H2(Ω) + ‖pn‖H1(Ω)

≤ C‖dtu
n‖L2(Ω) + C‖∇un−1‖L2(Ω)‖∇u

n‖
1
2

L2(Ω)‖u
n‖

1
2

H2(Ω)

+ C‖fn‖L2(Ω) + C‖∇wn−1‖L2(Ω)

≤ C‖dtu
n‖L2(Ω) + C‖fn‖L2(Ω) + C‖∇wn−1‖L2(Ω)

+ C‖∇un−1‖2L2(Ω)‖∇u
n‖L2(Ω) +

1

2
‖un‖H2(Ω), (5.9)

‖wn‖H2(Ω) + ‖ divwn‖H1(Ω)

≤ C‖dtw
n‖L2(Ω) + C‖∇un−1‖L2(Ω)‖∇w

n‖
1
2

L2(Ω)‖w
n‖

1
2

H2(Ω)

+ C‖gn‖L2(Ω) + C‖∇un‖L2(Ω) + C‖wn‖L2(Ω)

≤ C‖dtw
n‖L2(Ω) + C‖gn‖L2(Ω) + C‖∇un‖L2(Ω) + C‖wn‖L2(Ω)

+ C‖∇un−1‖2L2(Ω)‖∇w
n‖L2(Ω) +

1

2
‖wn‖H2(Ω) (5.10)

for all 1 ≤ n ≤ N . By applying Hypothesis 2.1, we obtain

‖fn‖L2(Ω) + ‖gn‖L2(Ω) ≤ ‖f‖L∞(0,T ;L2(Ω)) + ‖g‖L∞(0,T ;L2(Ω)) ≤ C (5.11)

for any 1 ≤ n ≤ N .

Combining (5.9)-(5.10) and applying Theorem 5.1 and the inequality (5.11), we have (5.8).

The proof is complete. �

In the following theorem, we will give a priori estimate for the discrete L2(H1) norm of

(dtu
n, dtw

n).

Theorem 5.3. Suppose that Hypothesis 2.1-2.3 hold. For all 2 ≤ m ≤ N , the solution (un,

wn, pn) of the problem (4.1)-(4.2) satisfies the following estimate:

τ

m
∑

n=2

(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

≤ C. (5.12)

Proof. Taking increments on (4.1)-(4.2) for n ≥ 2, we can show

(d2tu
n,v) + b(dtu

n−1,un,v) + b(un−2, dtu
n,v)

+ (µ + µr)a(dtu
n,v) − d(v, dtp

n) + d(dtu
n, q)

= (dtf
n,v) + 2µr(curldtw

n−1,v), (5.13)

(d2tw
n,ψ) + b(dtu

n−1,wn,ψ) + b(un−2, dtw
n,ψ)

+ c1a(dtw
n,ψ) + c2(div dtw

n, divψ) + 4µr(dtw
n,ψ)

= (dtg
n,ψ) + 2µr(curldtu

n,ψ) (5.14)

for any (v, q,ψ) ∈H1
0 (Ω) × L2

0(Ω) ×H1
0 (Ω).
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Let (v, q) = 2(dtu
n, dtp

n)τ in (5.13) and ψ = 2dtw
nτ in (5.14) and adding together, we get

‖dtu
n‖2L2(Ω) + ‖dtw

n‖2L2(Ω) + ‖dtu
n − dtu

n−1‖2L2(Ω) + ‖dtw
n − dtw

n−1‖2L2(Ω)

+ 2τ(µ + µr)‖∇dtu
n‖2L2(Ω) + 2τc1‖∇dtw

n‖2L2(Ω) + 2τc2‖ div dtw
n‖2L2(Ω)

+ 8µrτ‖dtw
n‖2L2(Ω) + 2τb(dtu

n−1,un, dtu
n) + 2τb(dtu

n−1,wn, dtw
n)

= ‖dtu
n−1‖2L2(Ω) + ‖dtw

n−1‖2L2(Ω) + 2τ(dtf
n, dtu

n) + 2τ(dtg
n, dtw

n)

+ 4µrτ(curldtw
n−1, dtu

n) + 4µrτ(curldtu
n, dtw

n). (5.15)

By applying the Hölder inequality, the Young inequality and (2.1)-(2.2), we have

2
∣

∣b(dtu
n−1,un, dtu

n)
∣

∣ ≤
µ

2
‖∇dtu

n‖2L2(Ω) + C‖un‖2H2(Ω)‖dtu
n−1‖2L2(Ω),

2
∣

∣b(dtu
n−1,wn, dtw

n)
∣

∣ ≤
c1
2
‖∇dtw

n‖2L2(Ω) + C‖wn‖2H2(Ω)‖dtu
n−1‖2L2(Ω),

2 |(dtf
n, dtu

n)| ≤
µ

2
‖∇dtu

n‖2L2(Ω) + C‖dtf
n‖2L2(Ω),

2 |(dtg
n, dtw

n)| ≤
c1
2
‖∇dtw

n‖2L2(Ω) + C‖dtg
n‖2L2(Ω),

4µr

∣

∣(curldtw
n−1, dtu

n)
∣

∣ ≤ 4µr‖dtw
n−1‖2L2(Ω) + µr‖∇dtu

n‖2L2(Ω),

4µr |(curldtu
n, dtw

n)| ≤ 4µr‖dtw
n‖2L2(Ω) + µr‖∇dtu

n‖2L2(Ω).

Combining the above inequalities and (5.15), we conclude that

‖dtu
n‖2L2(Ω) + (1 + 4µrτ)‖dtw

n‖2L2(Ω) + µτ‖∇dtu
n‖2L2(Ω) + c1τ‖∇dtw

n‖2L2(Ω)

≤ ‖dtu
n−1‖2L2(Ω) + (1 + 4µrτ)‖dtw

n−1‖2L2(Ω) + Cτ
(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

+ Cτ
(

‖un‖2H2(Ω) + ‖wn‖2H2(Ω)

)(

‖dtu
n−1‖2L2(Ω) + ‖dtw

n−1‖2L2(Ω)

)

(5.16)

for any 2 ≤ n ≤ N . Summing (5.16) with respect to n from n = 2 to n = m, we obtain

‖dtu
m‖2L2(Ω) + ‖dtw

m‖2L2(Ω) + τ

m
∑

n=2

(

µ‖∇dtu
n‖2L2(Ω) + c1‖∇dtw

n‖2L2(Ω)

)

≤ Cτ

m−1
∑

n=1

(

‖un+1‖2H2(Ω) + ‖wn+1‖2H2(Ω)

)(

‖dtu
n‖2L2(Ω) + ‖dtw

n‖2L2(Ω)

)

+ Cτ

m
∑

n=1

(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

+
(

‖dtu
1‖2L2(Ω) + ‖dtw

1‖2L2(Ω)

)

(5.17)

for any 2 ≤ m ≤ N . By using of Hypothesis 2.1, we can show

τ

m
∑

n=1

(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

≤ C
(

‖∂tf‖
2
L∞(0,T ;L2(Ω)) + ‖∂tg‖

2
L∞(0,T ;L2(Ω))

)

≤ C. (5.18)

By applying Lemma 4.1, Theorem 5.1 and (5.18) for the inequality (5.17), we have (5.12). The

proof is complete. �

In next theorem, we will give a priori estimate for the maximal H1 norm of (dtu
n, dtw

n)

and the discrete L2(L2) norm of (d2tu
n, d2tw

n).
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Theorem 5.4. Suppose that Hypothesis 2.1-2.3 hold. For all 2 ≤ m ≤ N , the solution (un,

wn, pn) of the problem (4.1)-(4.2) satisfies the following estimate:

sup
2≤n≤m

ν(tn)
(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

+ τ

m
∑

n=2

ν(tn)
(

‖d2tu
n‖2L2(Ω) + ‖d2tw

n‖2L2(Ω)

)

≤ C. (5.19)

Proof. Taking (v, q) = 2τ(d2tu
n, 0) in (5.13) and ψ = 2τd2tw

n in (5.14) and adding together

the two equations, we obtain

2τ‖d2tu
n‖2L2(Ω) + 2τ‖d2tw

n‖2L2(Ω) + 2b(dtu
n−1,un, d2tu

n)τ + 2b(un−2, dtu
n, d2tu

n)τ (5.20)

+ dt((µ + µr)‖∇dtu
n‖2L2(Ω) + c1‖∇dtw

n‖2L2(Ω))τ + 2b(dtu
n−1,wn, d2tw

n)τ

+ dt(c2‖ div dtw
n‖2L2(Ω) + 8µr‖dtw

n‖2L2(Ω))τ + 2b(un−2, dtw
n, d2tw

n)

≤ 2τ(dtf
n, d2tu

n) + 2τ(dtg
n, d2tw

n) + 4µrτ(curldtw
n−1, d2tu

n) + 4µrτ(curldtu
n, d2tw

n)

for any n ≥ 2.

By applying the Hölder inequality, the Young inequality and (2.2), we derive

2
∣

∣b(dtu
n−1,un, d2tu

n)
∣

∣ ≤ 2‖dtu
n−1‖L6(Ω)‖∇u

n‖L3(Ω)‖d
2
tu

n‖L2(Ω)

≤
1

4
‖d2tu

n‖2L2(Ω) + C‖un‖2H2(Ω)‖∇dtu
n−1‖2L2(Ω),

2
∣

∣b(un−2, dtu
n, d2tu

n)
∣

∣ ≤ 2‖un−2‖L∞(Ω)‖∇dtu
n‖L2(Ω)‖d

2
tu

n‖L2(Ω)

≤
1

4
‖d2tu

n‖2L2(Ω) + C‖un−2‖2H2(Ω)‖∇dtu
n‖2L2(Ω),

2
∣

∣b(dtu
n−1,wn, d2tw

n)
∣

∣ ≤ 2‖dtu
n−1‖L6(Ω)‖∇w

n‖L3(Ω)‖d
2
tw

n‖L2(Ω)

≤
1

4
‖d2tw

n‖2L2(Ω) + C‖wn‖2H2(Ω)‖∇dtu
n−1‖2L2(Ω),

2
∣

∣b(un−2, dtw
n, d2tw

n)
∣

∣ ≤ 2‖un−2‖L∞(Ω)‖∇dtw
n‖L2(Ω)‖d

2
tw

n‖L2(Ω)

≤
1

4
‖d2tw

n‖2L2(Ω) + C‖un−2‖2H2(Ω)‖∇dtw
n‖2L2(Ω),

2
∣

∣(dtf
n, d2tu

n)
∣

∣ ≤
1

4
‖d2tu

n‖2L2(Ω) + C‖dtf
n‖2L2(Ω),

2
∣

∣(dtg
n, d2tw

n)
∣

∣ ≤
1

4
‖d2tw

n‖2L2(Ω) + C‖dtg
n‖2L2(Ω),

4µr

∣

∣(curldtw
n−1, d2tu

n)
∣

∣ ≤
1

4
‖d2tu

n‖2L2(Ω) + C‖∇dtw
n−1‖2L2(Ω),

4µr

∣

∣(curldtu
n, d2tw

n)
∣

∣ ≤
1

4
‖d2tw

n‖2L2(Ω) + C‖∇dtu
n‖2L2(Ω).

Combining the above inequalities and (5.20), we conclude that

τ‖d2tu
n‖2L2(Ω) + τ‖d2tw

n‖2L2(Ω)

+ dt

(

(µ + µr)‖∇dtu
n‖2L2(Ω) + c1‖∇dtw

n‖2L2(Ω)

)

τ

+ dt

(

c2‖ div dtw
n‖2L2(Ω) + 8µr‖dtw

n‖2L2(Ω)

)

τ

≤ C
(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

τ
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+ C‖un−2‖2H2(Ω)

(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

τ

+ C
(

‖∇dtu
n−1‖2L2(Ω) + ‖∇dtw

n−1‖2L2(Ω)

)

τ

+ C‖un‖2H2(Ω)

(

‖∇dtu
n−1‖2L2(Ω) + ‖∇dtw

n−1‖2L2(Ω)

)

τ

+ C‖wn‖2H2(Ω)

(

‖∇dtu
n−1‖2L2(Ω) + ‖∇dtw

n−1‖2L2(Ω)

)

τ

+ C
(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

τ (5.21)

for any 2 ≤ n ≤ N . Multiplying the inequality (5.21) by ν(tn), and by applying ν(tn) ≤

ν(tn−1) + τ , we can show

ν(tn)
(

‖d2tu
n‖2L2(Ω) + ‖d2tw

n‖2L2(Ω)

)

τ

+ ν(tn)
(

(µ + µr)‖∇dtu
n‖2L2(Ω) + c1‖∇dtw

n‖2L2(Ω)

)

− ν(tn−1)
(

(µ + µr)‖∇dtu
n−1‖2L2(Ω) + c1‖∇dtw

n−1‖2L2(Ω)

)

+ ν(tn)
(

c2‖ div dtw
n‖2L2(Ω) + 8µr‖dtw

n‖2L2(Ω)

)

− ν(tn−1)
(

c2‖ div dtw
n−1‖2L2(Ω) + 8µr‖dtw

n−1‖2L2(Ω)

)

≤ C
(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

τ + C
(

1 + ‖un−2‖2H2(Ω) + ‖un‖2H2(Ω) + ‖wn‖2H2(Ω)

)

×
(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω) + ‖∇dtu
n−1‖2L2(Ω) + ‖∇dtw

n−1‖2L2(Ω)

)

τ (5.22)

for any 2 ≤ n ≤ N . Summing (5.22) with respect to n from n = 2 to n = m, and by applying

Theorem 5.2 and ν(t1) = τ , we can show

ν(tm)
(

(µ + µr)‖∇dtu
m‖2L2(Ω) + c1‖∇dtw

m‖2L2(Ω)

)

+τ

m
∑

n=2

ν(tn)
(

‖d2tu
n‖2L2(Ω) + ‖d2tw

n‖2L2(Ω)

)

≤ Cτ
m
∑

n=2

(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

+ ν(t1)
(

(µ + µr)‖∇dtu
1‖2L2(Ω) + c1‖∇dtw

1‖2L2(Ω)

)

+ Cτ

m
∑

n=2

(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

+ ν(t1)
(

c2‖ div dtw
1‖2L2(Ω) + 8µr‖dtw

1‖2L2(Ω)

)

≤ Cτ

m
∑

n=1

(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

+ Cτ
m
∑

n=1

(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

for any 2 ≤ m ≤ N . Using the triangle inequality and Theorems 4.2 and 3.3, we get that

τ
(

‖∇dtu
1‖2L2(Ω) + ‖∇dtw

1‖2L2(Ω)

)
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≤ Cτ−1
(

‖∇(u1 − u(t1))‖2L2(Ω) + ‖∇(w1 −w(t1))‖2L2(Ω)

)

+ C

∫ T

0

(

‖∇ut‖
2
L2(Ω) + ‖∇wt‖

2
L2(Ω)

)

dt ≤ C. (5.23)

By applying Theorem 5.3 and (5.18), (5.23), we have (5.19). The proof is complete. �

The following theorem gives a priori estimate for the discrete L2(H2) norm of (dtu
n, dtw

n)

and the discrete L2(H1) norm of dtp
n.

Theorem 5.5. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un,

wn, pn) of the problem (4.1)-(4.2) satisfies the following estimate:

τ

m
∑

n=1

ν(tn)
{

‖dtu
n‖2H2(Ω) + ‖dtw

n‖2H2(Ω) + ‖dtp
n‖2H1(Ω)

}

≤ C. (5.24)

Proof. According to (5.13) and (5.14), we can show (un,wn, pn) satisfy the following

system:






















d2tu
n + (dtu

n−1 · ∇)un + (un−2 · ∇)dtu
n − (µ + µr)∆dtu

n

+ ∇dtp
n = dtf

n + 2µrcurldtw
n−1, div dtu

n = 0,

d2tw
n + (dtu

n−1 · ∇)wn + (un−2 · ∇)dtw
n − c1∆dtw

n

− c2∇ div dtw
n + 4µrdtw

n = dtg
n + 2µrcurldtu

n

in D′((0, T ) × Ω). By applying the Hölder inequality and the Young inequality, (2.2), Hypoth-

esis 2.3, we conclude that

‖dtu
n‖H2(Ω) + ‖dtp

n‖H1(Ω)

≤ C‖d2tu
n‖L2(Ω) + C‖un‖H2(Ω)‖∇dtu

n−1‖L2(Ω)

+ C‖un−2‖H2(Ω)‖∇dtu
n‖L2(Ω) + C‖dtf

n‖L2(Ω) + C‖∇dtw
n−1‖L2(Ω), (5.25)

‖dtw
n‖H2(Ω) + ‖ div dtw

n‖H1(Ω)

≤ C‖d2tw
n‖L2(Ω) + C‖wn‖H2(Ω)‖∇dtu

n−1‖L2(Ω)

+ C‖un−2‖H2(Ω)‖∇dtw
n‖L2(Ω) + C‖dtg

n‖L2(Ω) + C‖∇dtu
n‖L2(Ω) (5.26)

for any 2 ≤ n ≤ N .

Squaring this identities (5.25) and (5.26), and multiplying by ν(tn), together with Theo-

rem 5.2, we get

ν(tn)‖dtu
n‖2H2(Ω) + ν(tn)‖dtp

n‖2H1(Ω)

≤ Cν(tn)‖d2tu
n‖2L2(Ω) + C‖∇dtu

n−1‖2L2(Ω) + C‖∇dtu
n‖2L2(Ω)

+ C‖dtf
n‖2L2(Ω) + C‖∇dtw

n−1‖2L2(Ω), (5.27)

ν(tn)‖dtw
n‖2H2(Ω) + ν(tn)‖ div dtw

n‖2H1(Ω)

≤ Cν(tn)‖d2tw
n‖2L2(Ω) + C‖∇dtu

n−1‖2L2(Ω) + C‖∇dtw
n‖2L2(Ω)

+ C‖dtg
n‖2L2(Ω) + C‖∇dtu

n‖2L2(Ω) (5.28)

for any 2 ≤ n ≤ N . Summing (5.27)-(5.28) with respect to n from n = 2 to n = m, we have

τ

m
∑

n=2

ν(tn)
(

‖dtu
n‖2H2(Ω)+‖dtw

n‖2H2(Ω)+‖dtp
n‖2H1(Ω)

)
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≤ Cτ
m
∑

n=1

(

‖dtf
n‖2L2(Ω) + ‖dtg

n‖2L2(Ω)

)

+ Cτ

m
∑

n=2

ν(tn)
(

‖d2tu
n‖2L2(Ω) + ‖d2tw

n‖2L2(Ω)

)

+ Cτ
m
∑

n=1

(

‖∇dtu
n‖2L2(Ω) + ‖∇dtw

n‖2L2(Ω)

)

for any 2 ≤ m ≤ N . By applying Theorems 5.3-5.4 and (5.18), (5.23), we have

τ

m
∑

n=2

ν(tn)
(

‖dtu
n‖2H2(Ω) + ‖dtw

n‖2H2(Ω) + ‖dtp
n‖2H1(Ω)

)

≤ C.

When n = 1, using ν(t1) = τ and Theorem 5.2, the estimate (3.17), we obtain

τν(t1)
(

‖dtu
1‖2H2(Ω) + ‖dtw

1‖2H2(Ω) + ‖dtp
1‖2H1(Ω)

)

≤ 2
(

‖u1‖2H2(Ω) + ‖w1‖2H2(Ω) + ‖p1‖2H1(Ω)

)

+ 2
(

‖u(0)‖2H2(Ω) + ‖w(0)‖2H2(Ω) + ‖p(0)‖2H1(Ω)

)

≤ C.

Combining the above two inequalities, we can show the estimate (5.24). The proof is thus

complete. �

6. The Fully Discrete Euler Semi-Implicit Scheme

In this section, we study the fully discrete Euler semi-implicit mixed finite element scheme

for the MNSE, which has been proposed and studied in [29]. We establish the L2-H1 error

estimates for the finite element solutions of the MNSE unconditionally.

6.1. Spatial discretization

Now we introduce some notations for the fully discrete scheme. Let Th be a quasi-uniform

tetrahedral partition of Ω with Ω = ∪K∈Th
K. The mesh size is denoted by h = maxK∈Th

hK ,

where hK is the mesh size of the tetrahedron K. Moreover, each tetrahedron K is supposed to

be the image of a reference tetrahedron K̂ under an affine map FK . We also defined Pn(K) is

the space of polynomials of degree n on K, while P3
n(K) = [Pn(K)]

3
. We introduce the fnite

element spaces (Uh,Qh) ⊂ (H1
0 (Ω) × L2

0(Ω)) with for the linear velocity with pressure, which

satisfies the discrete inf-sup condition: there exists a constant β such that

inf
06=qh∈Qh

sup
06=vh∈Uh

(div vh, qh)

‖qh‖L2(Ω)‖∇vh‖L2(Ω)
≥ β, (6.1)

where β is positive constants depending only on Ω. The space Wh ⊂ H1
0 (Ω) will be used to

approximate the angular velocity. There are many finite element pairs satisfy the discrete inf-

sup condition, such as P2-P0 element, Mini-element and Taylor-Hood element (see, e.g., [13]).

In this paper, we choose the following finite element space:

Uh =
{

v ∈ C0(Ω) : v ◦ FK |K ∈ [P1(K̂) ⊕ span(B̂)]3, ∀K ∈ Th

}

∩H1
0 (Ω),
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Qh =
{

q ∈ C0(Ω) : q ◦ FK |K ∈ P1(K̂), ∀K ∈ Th

}

∩ L2
0(Ω),

Wh =
{

v ∈ C0(Ω) : v|K ∈ P3
1(K), ∀K ∈ Th

}

∩H1
0 (Ω),

where B̂ ∈ H1
0 (K̂) is standard bubble function and 0 ≤ B̂ ≤ 1 and B̂(λ̂) = 1, which λ̂ is the

barycenter of K̂. The subspace U0,h of Uh, which given by

U0,h = {v ∈ Uh : d(v, qh) = 0, qh ∈ Qh} .

We assume that the initial data is smooth and initialize the scheme

u0
h = PU0,h

u0, w0
h = PWh

w0, p0h = PQh
p0.

Denote PAh
as L2-orthogonal projection operator from L2(Ω) into Ah, where Ah is either U0,h,

Wh. PQh
as L2-orthogonal projection operator from L2(Ω) into Qh. Then, for every 1 ≤ n ≤ N

we compute (un
h,w

n
h , p

n
h) ∈ Uh ×Wh ×Qh that solves

(dtu
n
h,vh) + bh(un−1

h ,un
h,vh) + (µ + µr)a(un

h,vh) − d(vh, p
n
h) + d(un

h, qh)

= (fn,vh) + 2µr(curlw
n−1
h ,vh), (6.2)

(dtw
n
h ,ψh) + bh(un−1

h ,wn
h ,ψh) + c1a(wn

h ,ψh) + c2(divwn
h , divψh) + 4µr(w

n
h ,ψ

n
h)

= (gn,ψh) + 2µr(curlu
n
h,ψh) (6.3)

for all (vh,ψh, qh) ∈ Uh ×Wh ×Qh, where bh :
[

H1
0 (Ω)

]3
→ R denote that

bh(u,v,w) = b(u,v,w) +
1

2
(divu,v ·w) =

1

2
[b(u,v,w) − b(u,w,v)]

for any u,v,w ∈H1
0 (Ω).

Remark 6.1. We use a semi-implicit treatment to the nonlinear convection term and implicit

to the pressure in the above fully discrete scheme, which in turn leads to a Stokes solver. In fact,

there have been quite a few existing works for the standard Navier-Stokes equations, in which

the nonlinear convection term is treated fully explicitly, and the Stokes solver is decoupled

into two Poisson solvers, see, e.g., [6, 8, 33, 38]. Some ideas in these interesting works may be

applicable to the MNSE system, see [32, 35].

The trilinear form bh(·, ·, ·) satisfies

bh(u,v,v) = 0, bh(u,v,w) = −bh(u,w,v) (6.4)

for all u,v,w ∈H1
0 (Ω) and for all u ∈H1

div(Ω),

bh(u,v,w) = b(u,v,w).

In addition, the trilinear form bh(·, ·, ·) satisfies the following estimates:

|bh(u,v,w)| ≤ C‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω), (6.5)

|bh(u,v,w)| ≤ C‖u‖L2(Ω)‖v‖H2(Ω)‖∇w‖L2(Ω), (6.6)

|bh(u,v,w)| ≤ C‖∇u‖L2(Ω)‖v‖H2(Ω)‖w‖L2(Ω) (6.7)

for all u,v,w ∈H1
0 (Ω).
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The projection PAh
satisfies the following approximate properties (see, e.g., [1, 13, 16, 19]):

‖v − PU0,h
v‖L2(Ω) + h‖∇(v − PU0,h

v)‖L2(Ω) ≤ Ch2‖v‖H2(Ω), (6.8)

‖ψ − PWh
ψ‖L2(Ω) + h‖∇(w − PWh

w)‖L2(Ω) ≤ Ch2‖ψ‖H2(Ω), (6.9)

‖q − PQh
q‖L2(Ω) ≤ Ch‖q‖H1(Ω), (6.10)

where v,ψ ∈H1
div(Ω) ∩H2(Ω) and q ∈ L2

0(Ω) ∩H1(Ω).

We define the Stokes projection (u, p) as the pair (Rh(u, p),Qh(u, p)) ∈ Uh×Qh that solves

µa(Rh(u, p),vh) − d(vh,Qh(u, p)) = µa(u,vh) − d(vh, p), (6.11)

d(Rh(u, p), qh) = d(u, qh) (6.12)

for any (vh, qh) ∈ Uh ×Qh and µ = µ + µr, which has the following well-known approximation

properties (see, e.g., [13, 18]):

‖u−Rh(u, p)‖L2(Ω) + h‖∇(u−Rh(u, p))‖L2(Ω) + ‖p−Qh(u, p)‖L2(Ω)

≤ Chl+1(‖u‖Hl+1(Ω) + ‖p‖Hl(Ω)), l = 0, 1 (6.13)

for (u, p) ∈ [H l+1(Ω) ∩H1
0 (Ω)] ×H l(Ω) with C independent of h, u and p.

The Ritz projection Rh : W → Wh defined by

c1a(Rhw −w,ψh) + c2(div(Rhw −w), divψh) = 0, ∀ψh ∈ Wh, (6.14)

which has the following well-known approximation properties (see, e.g., [13, 37]):

‖w − Rhw‖L2(Ω) + h‖∇(w − Rhw)‖L2(Ω) ≤ Ch2‖w‖H2(Ω) (6.15)

for w ∈H2(Ω) ∩H1
0 (Ω).

It can be shown easily that the above fully discrete finite element solution satisfies a discrete

energy estimate.

Theorem 6.1. Suppose that Hypothesis 2.1 holds. For any 1 ≤ m ≤ N , the solution (un
h ,w

n
h , p

n
h)

of the problem (6.2)-(6.3) satisfies the discrete energy estimate

‖um
h ‖2L2(Ω) + ‖wm

h ‖2L2(Ω) + τ

m
∑

n=1

(

τ‖dtu
n
h‖

2
L2(Ω) + τ‖dtw

n
h‖

2
L2(Ω)

)

+ τ

m
∑

n=1

(

µ‖∇un
h‖

2
L2(Ω) + c1‖∇w

n
h‖

2
L2(Ω)

)

≤ C. (6.16)

Proof. Taking (vh, qh) = 2τ(un
h, p

n
h) in (6.2) and ψ = 2τwn

h in (6.3), respectively. Then

the proof is almost the same as Theorem 4.1. �

6.2. Error estimates

In this subsection, we will prove the L2-H1 error estimates of (un
h,w

n
h) and the L2-error

estimates of pnh. For convenience, setting En
u = un − un

h, En
w = wn − wn

h and En
p = pn − pnh.

Our analysis relies on the error splitting argument which can be described as

ēnu = un − PU0,h
un, ēnw = wn − PWh

wn, ēnp = pn − PQh
pn,

enu = PU0,h
un − un

h, enw = PWh
wn −wn

h , enp = PQh
pn − pnh,

Ēn
u = un −Rh(un, pn), Ēn

w = wn − Rhw
n, Ēn

p = pn −Qh(un, pn),

En
u = Rh(un, pn) − un

h, En
w = Rhw

n −wn
h , En

p = Qh(un, pn) − pnh.
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Subtracting (6.2) and (6.3) from (4.1) and (4.2), respectively, we can get the error equations

(dtE
n
u ,vh) + bh(En−1

u ,un,vh) + bh(un−1
h , En

u,vh) + (µ + µr)a(En
u ,vh)

− d(vh, E
n
p ) + d(En

u , qh) − 2µr(curlEn−1
w ,vh) = 0, (6.17)

(dtE
n
w,ψh) + bh(En−1

u ,wn,ψh) + bh(un−1
h , En

w,ψh) + c1a(En
w,ψh)

+ c2(div En
w, divψh) + 4µr(E

n
w,ψh) − 2µr(curlEn

u ,ψh) = 0 (6.18)

for all (vh,ψh, qh) ∈ Uh ×Wh ×Qh.

We are now in a position to state and prove the error estimates for the fully discrete finite

element method.

Theorem 6.2. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un
h,

wn
h , p

n
h) of the problem (6.2)-(6.3) satisfies the error estimates

sup
1≤n≤m

(

‖un − un
h‖

2
L2(Ω) + ‖wn −wn

h‖
2
L2(Ω)

)

(6.19)

+ τ

m
∑

n=1

(

‖∇(un − un
h)‖2L2(Ω) + ‖∇(wn −wn

h)‖2L2(Ω)

)

≤ Ch2.

Proof. Taking (vh, qh) = 2τ(enu, e
n
p ) in (6.17) and ψh = 2τenw in (6.18) and adding together,

noticing that

−d(enu, E
n
p ) + d(En

u , e
n
p ) = −d(enu, ē

n
p ) − d(enu, e

n
p ) + d(enu, e

n
p ) + d(ēnu, e

n
p )

= −d(enu, ē
n
p ) + d(ēnu, e

n
p ) = −d(enu, ē

n
p ),

applying the identities

2a(a− b) = |a|
2
− |b|

2
+ |a− b|

2

and (6.4), we have

‖enu‖
2
L2(Ω) + ‖enw‖

2
L2(Ω) −

(

‖en−1
u ‖2L2(Ω) + ‖en−1

w ‖2L2(Ω)

)

+ 2τbh
(

En−1
u ,un, enu

)

+ 2τbh
(

un−1
h , ēnu, e

n
u

)

+ 2τbh
(

En−1
u ,wn, enw

)

+ 2τbh
(

un−1
h , ēnw, e

n
w

)

+ µ̄
(

‖∇En
u‖

2
L2(Ω) + ‖∇enu‖

2
L2(Ω)

)

τ + c1

(

‖∇En
w‖

2
L2(Ω) + ‖∇enw‖

2
L2(Ω)

)

τ

+ c2

(

‖ div En
w‖

2
L2(Ω) + ‖ div enw‖

2
L2(Ω)

)

τ + 4µr

(

‖En
w‖

2
L2(Ω) + ‖enw‖

2
L2(Ω)

)

τ

≤ µ̄‖∇ēnu‖
2
L2(Ω)τ + c1‖∇ē

n
w‖

2
L2(Ω)τ + c2‖ div ēnw‖

2
L2(Ω) + 4µr‖ē

n
w‖

2
L2(Ω)

+ 4µr(curlE
n−1
w , enu)τ + 4µr(curlE

n
u, e

n
w)τ + 2d(enu, ē

n
p ). (6.20)

By virtue of the Hölder inequality and the Young inequality, (2.2) and (6.5)-(6.6), we can show

2
∣

∣bh(En−1
u ,un, enu)

∣

∣ ≤
µ

3
‖∇enu‖

2
L2(Ω) + C‖un‖2H2(Ω)‖E

n−1
u ‖2L2(Ω),

2
∣

∣bh(un−1
h , ēnu, e

n
u)
∣

∣ ≤
µ

3
‖∇enu‖

2
L2(Ω) + C‖∇un−1

h ‖2L2(Ω)‖∇ē
n
u‖

2
L2(Ω),

2
∣

∣bh(En−1
u ,wn, enw)

∣

∣ ≤
c1
2
‖∇enw‖

2
L2(Ω) + C‖wn‖2H2(Ω)‖E

n−1
u ‖2L2(Ω),

2
∣

∣bh(un−1
h , ēnw, e

n
w)
∣

∣ ≤
c1
2
‖∇enw‖

2
L2(Ω) + C‖∇un−1

h ‖2L2(Ω)‖∇ē
n
w‖

2
L2(Ω),
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4µr

∣

∣(curlEn−1
w , enu)

∣

∣ ≤ µr‖∇e
n
u‖

2
L2(Ω) + 4µr‖E

n−1
w ‖2L2(Ω),

4µr |(curlE
n
u , e

n
w)| ≤ 4µr‖e

n
w‖

2
L2(Ω) + µr‖∇En

u‖
2
L2(Ω),

2
∣

∣d(enu, ē
n
p )
∣

∣ ≤
µ

3
‖∇enu‖

2
L2(Ω) + C‖ēnp‖

2
L2(Ω).

Combining the above inequalities and (6.20), we derive

‖enu‖
2
L2(Ω) + ‖enw‖

2
L2(Ω) −

(

‖en−1
u ‖2L2(Ω) + ‖en−1

w ‖2L2(Ω)

)

+ µτ‖∇En
u‖

2
L2(Ω) + c1τ‖∇En

w‖
2
L2(Ω)

≤ C
(

1 + ‖un‖2H2(Ω) + ‖wn‖2H2(Ω)

)(

‖En−1
u ‖2L2(Ω) + ‖En−1

w ‖2L2(Ω)

)

τ

+ C
(

1 + ‖∇un−1
h ‖2L2(Ω)

)(

‖∇ēnu‖
2
L2(Ω) + ‖∇ēnw‖

2
L2(Ω) + ‖ēnp‖

2
L2(Ω)

)

τ (6.21)

for all 1 ≤ n ≤ N .

Summing (6.21) with respect to n from n = 1 to n = m, by applying (6.8)-(6.10), Theo-

rems 6.1, 5.2 and (e0u, e
0
w) = (0,0), we have

‖Em
u ‖2L2(Ω) + ‖Em

w ‖2L2(Ω) + τ

m
∑

n=1

(

µ‖∇En
u‖

2
L2(Ω) + c1‖∇En

w‖
2
L2(Ω)

)

≤ τ

m−1
∑

n=0

dn

(

‖En
u‖

2
L2(Ω) + ‖En

w‖
2
L2(Ω)

)

+ Ch2, (6.22)

where dn = C(1 + ‖un+1‖2
H2(Ω) + ‖wn+1‖2

H2(Ω)) and 1 ≤ m ≤ N . By applying Lemma 4.1 to

(6.22), we obtain

‖Em
u ‖2L2(Ω) + ‖Em

w ‖2L2(Ω) + τ
m
∑

n=1

(

µ‖∇En
u‖

2
L2(Ω) + c1‖∇En

w‖
2
L2(Ω)

)

≤ Ch2 exp

(

τ
m−1
∑

n=0

dn

)

. (6.23)

Combining (6.23) and Theorem 5.2, we have (6.19). The proof is complete. �

Remark 6.2. Here we only give a proof of a first order convergence in space in the L2 norm.

We have not got the optimal error estimate of the L2 norm in space because of our technical

reasons, where we establish the error estimate of L2 norm and H1 norm in a unified way. It

is possible to get a second order convergence in the L2 norm in space to use other techniques,

which is not the scope of this paper and we will address in a future work.

Theorem 6.3. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un
h,

wn
h , p

n
h) of the problem (6.2)-(6.3) satisfies the error estimates

sup
1≤n≤m

(

ν(tn)‖∇(un − un
h)‖2L2(Ω) + ν(tn)‖∇(wn −wn

h)‖2L2(Ω)

)

(6.24)

+ τ

m
∑

n=1

ν(tn)
(

‖dt(u
n − un

h)‖2L2(Ω) + ‖dt(w
n −wn

h)‖2L2(Ω)

)

≤ Ch2.
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Proof. By applying (6.11)-(6.12) and (6.14), we can rewrite the system (6.17)-(6.18) that

(dtE
n
u ,vh) + bh(En−1

u ,un,vh) + bh(un−1
h , En

u,vh) + µ̄a(En
u,vh)

− d(vh, E
n
p ) + d(En

u, qh) − 2µr(curlE
n−1
w ,vh) = 0, (6.25)

(dtE
n
w,ψh) + bh(En−1

u ,wn,ψh) + bh(un−1
h , En

w,ψh) + c1a(En
w,ψh)

+ c2(divEn
w, divψh) + 4µr(E

n
w,ψh) − 2µr(curlE

n
uψh) = 0 (6.26)

for any (vh,ψh, qh) ∈ Uh ×Wh ×Qh.

Taking (vh, qh) = (2dtE
n
uτ, 0) in (6.25) and ψh = 2dtE

n
wτ in (6.26) and adding together,

noticing d(dtE
n
u, E

n
p ) = 0, and applying the identity

2a(a− b) = |a|
2
− |b|

2
+ |a− b|

2
,

we can show

2τ‖dtE
n
u‖

2
L2(Ω) + 2τ‖dtE

n
w‖

2
L2(Ω) + dt(µ̄‖∇E

n
u‖

2
L2(Ω)

+ c1‖∇E
n
w‖

2
L2(Ω) + c2‖ divEn

w‖
2
L2(Ω))τ

+ 2bh(En−1
u ,un, dtE

n
u)τ + 2bh(un−1

h , En
u , dtE

n
u)τ

− 4µr(curlE
n−1
w , dtE

n
u)τ

+ 2bh(En−1
u ,wn, dtE

n
w)τ + 2bh(un−1

h , En
w, dtE

n
w)τ

− 4µr(curlE
n
u, dtE

n
w)τ + 8µr(E

n
w, dtE

n
w)τ

≤ −2(dtĒ
n
u, dtE

n
u)τ − 2(dtĒ

n
w, dtE

n
w)τ. (6.27)

By applying the inverse inequality, the Young inequality and (6.5), (6.7), we obtain

2
∣

∣bh(En−1
u ,un, dtE

n
u) + bh(un−1

h , En
u, dtE

n
u)
∣

∣

≤
1

3
‖dtE

n
u‖

2
L2(Ω) + C‖un‖2H2(Ω)‖∇En−1

u ‖2L2(Ω)

+ C‖un−1‖2H2(Ω)‖∇En
u‖

2
L2(Ω) + Ch−1‖∇En−1

u ‖2L2(Ω)‖∇En
u‖

2
L2(Ω),

2
∣

∣bh(En−1
u ,wn, dtE

n
w) + bh(un−1

h , En
w, dtE

n
w)
∣

∣

≤
1

4
‖dtE

n
w‖

2
L2(Ω) + C‖wn‖2H2(Ω)‖∇En−1

u ‖2L2(Ω)

+ C‖un−1‖2H2(Ω)‖∇En
w‖

2
L2(Ω) + Ch−1‖∇En−1

u ‖2L2(Ω)‖∇En
w‖

2
L2(Ω).

Similarly, by applying the Young ineuqality and (2.2), we have

4µr

∣

∣(curlEn−1
w , dtE

n
u)
∣

∣ ≤
1

3
‖dtE

n
u‖

2
L2(Ω) + C‖∇En−1

w ‖2L2(Ω),

4µr |(curlE
n
u , dtE

n
w)| ≤

1

4
‖dtE

n
w‖

2
L2(Ω) + C‖∇En

u‖
2
L2(Ω),

8µr |(E
n
w, dtE

n
w)| ≤

1

4
‖dtE

n
w‖

2
L2(Ω) + C‖∇En

w‖
2
L2(Ω),

2
∣

∣(dtĒ
n
u, dtE

n
u)
∣

∣ ≤
1

3
‖dtE

n
u‖

2
L2(Ω) + C‖dtĒ

n
u‖

2
L2(Ω),

2
∣

∣(dtĒ
n
w, dtE

n
w)
∣

∣ ≤
1

4
‖dtE

n
w‖

2
L2(Ω) + C‖dtĒ

n
w‖

2
L2(Ω).
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Combining the above inequalities and (6.27), multiplying the result by ν(tn), by applying

ν(tn) ≤ ν(tn−1) + τ and Theorem 5.2, we have

ν(tn)
(

‖dtE
n
u‖

2
L2(Ω) + ‖dtE

n
w‖

2
L2(Ω)

)

τ

+ dt(ν(tn)
(

µ̄‖∇En
u‖

2
L2(Ω) + c1‖∇E

n
w‖

2
L2(Ω) + c2‖ divEn

w‖
2
L2(Ω))

)

τ

≤ C
(

‖∇Ēn−1
u ‖2L2(Ω) + ‖∇Ēn−1

w ‖2L2(Ω)

)

τ + C
(

‖∇En
u‖

2
L2(Ω) + ‖∇En

w‖
2
L2(Ω)

)

τ

+ C
(

‖∇En−1
u ‖2L2(Ω) + ‖∇En−1

w ‖2L2(Ω)

)

τ + Cν(tn)
(

‖dtĒ
n
u‖

2
L2(Ω) + ‖dtĒ

n
w‖

2
L2(Ω)

)

τ

+ Ch−1ν(tn−1)
(

‖∇En
u‖

2
L2(Ω) + ‖∇En

w‖
2
L2(Ω)

)(

µ̄‖∇En−1
u ‖2L2(Ω) + c1‖∇E

n−1
w ‖2L2(Ω)

)

τ

+ Ch−1
(

‖∇En
u‖

2
L2(Ω) + ‖∇En

w‖
2
L2(Ω)

)(

µ̄‖∇Ēn−1
u ‖2L2(Ω) + c1‖∇Ē

n−1
w ‖2L2(Ω)

)

τ. (6.28)

By applying (6.13) and (6.15), we can show

‖∇Ēn−1
u ‖2L2(Ω) + ‖∇Ēn−1

w ‖2L2(Ω)

≤ Ch2
(

‖un−1‖2H2(Ω) + ‖wn−1‖2H2(Ω) + ‖pn−1‖2H1(Ω)

)

, (6.29)

‖dtĒ
n
u‖

2
L2(Ω) + ‖dtĒ

n
w‖

2
L2(Ω)

≤ Ch4
(

‖dtu
n‖2H2(Ω) + ‖dtw

n‖2H2(Ω) + ‖dtp
n‖2H1(Ω)

)

(6.30)

for any 1 ≤ n ≤ N .

Summing (6.28) with respect to n from n = 1 to n = m, and by applying (6.29)-(6.30),

Theorems 5.2, 5.5, 6.2 and ν(t0) = 0, we have

ν(tm)
(

µ̄‖∇Em
u ‖2L2(Ω) + c1‖∇E

m
w ‖2L2(Ω)

)

+ τ

m
∑

n=1

ν(tn)
(

‖dtE
n
u‖

2
L2(Ω) + ‖dtE

n
w‖

2
L2(Ω)

)

≤ τ

m−1
∑

n=0

dnν(tn)
(

µ̄‖∇En
u‖

2
L2(Ω) + c1‖∇E

n
w‖

2
L2(Ω)

)

+ Ch2, (6.31)

where dn = Ch−1(‖∇En+1
u ‖2

L2(Ω) + ‖∇En+1
w ‖2

L2(Ω)) and 1 ≤ m ≤ N .

By applying Lemma 4.1 and Theorem 6.2 to (6.31), we conclude that

ν(tm)
(

µ̄‖∇Em
u ‖2L2(Ω) + c1‖∇E

m
w‖2L2(Ω)

)

+ τ

m
∑

n=0

ν(tn)
(

‖dtE
n
u‖

2
L2(Ω) + ‖dtE

n
w‖

2
L2(Ω)

)

≤ Ch2 exp

(

τ

m−1
∑

n=0

dn

)

≤ Ch2. (6.32)

Combining (6.29)-(6.30) and (6.32), we can show (6.24). The proof is complete. �

Theorem 6.4. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un
h,

wn
h , p

n
h) of the problem (6.2)-(6.3) satisfies the error estimates

τ

m
∑

n=1

ν(tn)‖pn − pnh‖
2
L2(Ω) ≤ Ch2. (6.33)
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Proof. By applying the discrete inf-sup condition (6.1), the Hölder inequality and (2.2),

Eq. (6.17), we have

β‖En
p ‖L2(Ω) ≤ C‖dtE

n
u‖L2(Ω) + C‖∇En−1

u ‖L2(Ω)‖∇u
n‖L2(Ω)

+ C‖∇En
u‖L2(Ω) + C‖∇En

w‖L2(Ω)

+ C
(

‖∇un−1‖L2(Ω) + ‖∇En−1
u ‖L2(Ω)

)

‖∇En
u‖L2(Ω) + C‖Ēn

p ‖L2(Ω). (6.34)

Squaring this identities (6.34) and multiplying the result by ν(tn)τ , by applying Theorem 5.1,

we obtain

ν(tn)‖En
p ‖

2
L2(Ω)τ ≤ Cν(tn)‖dtE

n
u‖

2
L2(Ω)τ

+ C
(

‖∇En
u‖

2
L2(Ω) + ‖∇En

w‖
2
L2(Ω) + ‖∇En−1

u ‖2L2(Ω)

)

τ

+ Cν(tn)‖∇En
u‖

2
L2(Ω)‖∇En−1

u ‖2L2(Ω)τ + C‖Ēn
p ‖

2
L2(Ω)τ. (6.35)

Summing (6.35) with respect to n from n = 1 to n = m and by applying Theorems 6.2-6.3 and

(6.13), we can show

τ
m
∑

n=1

ν(tn)‖En
p ‖

2
L2(Ω) ≤ Cτ

m
∑

n=1

ν(tn)‖dtE
n
u‖

2
L2(Ω) + Ch2τ

m−1
∑

n=0

‖∇En
u‖

2
L2(Ω) + Ch2. (6.36)

A repeated application of Theorems 6.2-6.3 to (6.36), which implies that

τ
m
∑

n=1

ν(tn)‖En
p ‖

2
L2(Ω) ≤ Ch2 + Ch2‖∇E0

u‖
2
L2(Ω). (6.37)

Combining (6.8), (6.13) and (6.37), Hypothesis 2.1, we have (6.32). The proof is complete. �

Finally, combining the Theorems 4.2-4.4 and Theorems 6.2-6.4, we can get the final uncon-

ditional error estimates.

Theorem 6.5. Suppose that Hypothesis 2.1-2.3 hold. For all 1 ≤ m ≤ N , the solution (un
h,

wn
h , p

n
h) of the problem (6.2)-(6.3) satisfies the error estimates

sup
1≤n≤m

(

‖u(tn) − un
h‖

2
L2(Ω) + ‖w(tn) −wn

h‖
2
L2(Ω)

)

+ τ

m
∑

n=1

(

‖∇(u(tn) − un
h)‖2L2(Ω) + ‖∇(w(tn) −wn

h)‖2L2(Ω)

)

≤ C(τ2 + h2),

sup
1≤n≤m

(

ν(tn)‖∇(u(tn) − un
h)‖2L2(Ω) + ν(tn)‖∇(w(tn) −wn

h)‖2L2(Ω)

)

+ τ
m
∑

n=1

ν(tn)
(

‖dt(u(tn) − un
h)‖2L2(Ω) + ‖dt(w(tn) −wn

h)‖2L2(Ω)

)

≤ C(τ2 + h2),

τ

m
∑

n=1

ν(tn)‖p(tn) − pnh‖
2
L2(Ω) ≤ C(τ2 + h2).

7. Numerical Experiments

In this section, we present a series of numerical experiments to verify the convergence results

of the scheme. Our test is based on the adaptive finite element package “parallel hierarchical
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grid” (PHG) ([41, 42]), and the computations are carried out on the cluster LSSC-IV of the

State Key Laboratory on Scientific and Engineering Computing, Chinese Academic of Sciences.

In all examples, the domain under consideration is Ω = [0, 1]3 and the mesh is obtained by

a uniform tetrahedral partition. The first two examples are used to verify the optimal error

estimates of the fully discrete scheme. The last one is to simulate the three dimensional lid-

driven cavity flow. Due to the lack of Mini element in PHG package, we employ the lowest

Taylor-Hood element, i.e., the continuous P2 finite element for discretizing the linear velocity

u and the continuous P1 finite element for discretizing the pressure p, and the continuous P2

finite element for discretizing the angular velocity w.

Example 7.1. This example is to test the time discretization error for the Euler semi-implicit

scheme. We set µ = µr = 1.0, c1 = 2.0, c2 = 1.0, f and g are chosen so that the exact solution

is

u(x, y, z, t) = (z cos(t), x exp(−t), yt) ,

p(x, y, z, t) = 0,

w(x, y, z, t) = (t, cos(t), exp(−t)) .

It can be seen that the exact solution u is linear in space and p,w are constant in space, so

the time discretization error plays a dominant role. In this example, we compute the errors at

each time step and write down the errors at the last moment. The terminal time is T = 1.0

and the mesh size is h =
√
3
2 . Table 7.1 shows that the results for the linear velocity, pressure,

and angular velocity, we can see that all the errors are first-order.

Table 7.1: Errors and convergence rates for Example 7.1.

∆t
∥

∥u(T ) − u
N

h

∥

∥

H1 order
∥

∥w(T ) −w
N

h

∥

∥

H1 order

1/40 1.01e-04 - 4.75e-04 -

1/80 5.05e-05 0.99 2.36e-04 1.01

1/160 2.59e-05 0.96 1.18e-04 1.00

∆t
∥

∥p(T ) − pNh
∥

∥

L2 order

1/40 1.98e-03 -

1/80 9.80e-04 1.01

1/160 4.86e-04 1.01

Example 7.2. This example is to test the spatial discretization error for the scheme. The

parameters are the same to Example 7.1, f and g are chosen so that the exact solution is

u(x, y, z, t) = (sin(2πx + t) sin(2πy + t), cos(2πx + t) cos(2πy + t), 0) ,

p(x, y, z, t) = sin(πx) − sin(πy),

w(x, y, z, t) = (0, 0,−4π sin(2πx + t) cos(2πy + t)) .

The initial time step is ∆t0 = 1
160 and the initial mesh size is h0 =

√
3
4 , the terminal time is

also T = 1.0. Here we set ∆t = Ch2 to obtain the convergence rate. Table 7.2 shows that the

numerical results, we can see that all the errors are second-order.
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Table 7.2: Errors and convergence rates for Example 7.2.

(∆t, h)
∥

∥u(T ) − u
N

h

∥

∥

H1 order
∥

∥w(T ) −w
N

h

∥

∥

H1 order

(∆t0, h0) 2.75 - 21.04 -

(∆t0/4, h0/2) 0.74 1.89 6.51 1.69

(∆t0/16, h0/4) 0.19 1.96 1.68 1.96

(∆t, h)
∥

∥p(T ) − pNh
∥

∥

L2 order

(∆t0, h0) 1.09 -

(∆t0/4, h0/2) 0.17 2.65

(∆t0/16, h0/4) 0.04 2.04

Tables 7.1 and 7.2 show that the fully discretization solution converges with the optimal

rates, i.e.,

∥

∥u(T ) − uN
h

∥

∥

H1 ≈ O(∆t + h2),
∥

∥w(T ) −wN
h

∥

∥

H1 ≈ O(∆t + h2),
∥

∥p(T ) − pNh
∥

∥

L2 ≈ O(∆t + h2).

Example 7.3. This example computes the benchmark problem of lid-driven cavity flow. We

set the physics parameters c1 = 2.0, c2 = 1.0 and the source terms f = (0, 0, 0) and g =

(50 cos(πz), 50 sin(πy), 100 exp(x)). In order to show the effect of the kinematic viscosity, we

take µ as 1
100 ,

1
400 ,

1
1000 in the computation, and we set µ = 2µr. The initial values are given by

u0 =

{

(0, 0, 0), if 0 ≤ z < 1,

(1, 0, 0), if z = 1,

w0 = (0, 0, 0).

Together with the boundary conditions are set by: u|∂Ω = u0 and w|∂Ω = w0. In this example,

we fix a tetrahedral mesh with 196608 elements, and the time step is ∆t = 0.01, the terminal

time T is chosen such that the discretization solution satisfies

∥

∥un
h − un−1

h

∥

∥

L2 +
∥

∥wn
h −wn−1

h

∥

∥

L2 ≤ 10−8,

that is, the variables reach almost steady state. We find that the kinematic viscosity µ greatly

affects the terminal time T . When µ = 1
100 , T = 7.65. When µ = 1

400 , T = 18.34. When

Fig. 7.1. Streamlines of uh at x = 0.5 when µ = 1/100, 1/400, 1/1000 (from left to right).
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Fig. 7.2. Streamlines of uh at y = 0.5 when µ = 1/100, 1/400, 1/1000 (from left to right).

Fig. 7.3. Streamlines of uh at z = 0.5 when µ = 1/100, 1/400, 1/1000 (from left to right).

µ = 1
1000 , T = 31.34. Figs. 7.1-7.3 show the streamlines of uh projected onto the cross section

for case µ = 1
100 ,

1
400 ,

1
1000 at time T . We can clearly see that as µ decreases, the number and

distribution of vortexes have changed at three cross sections.

8. Conclusions

We introduced and analyzed a first order fully discrete mixed finite element scheme for

the micropolar Navier-Stokes equations. The regularity results of the solution of MNSE were

established by applying the energy method. We have shown the L2-H1 error estimates for

the Euler semi-implicit time discrete solution of MNSE in this paper. In addition, the regu-

larity estimates of time discrete solution were shown rigorously. Finally, we have shown the

unconditional L2-H1 error estimates for the finite element solution of MNSE.

In this paper, we only consider a first order fully discrete scheme for MNSE, a second order

accurate numerical scheme could be analyzed for the MNSE system by a similar technique

developed in [5,33] and the references therein. To improve the convergence order and accuracy

in the spatial discretization, a possible way is to employ uniform mesh to derive some super-

convergence results as what have been done for standard Navier-Stokes equation in [26]. For

the 2D case, another possible way is to use the vorticity-stream function formulation, which

have been proven to be a very efficient and accurate calculation method, see [7, 27, 39].

Acknowledgments. This work was supported by the National Natural Science Foundation of

China (Grant Nos. 11871467, 11471329).



Convergence and Error Estimates of a Fully Discrete Finite Element Method 109

References

[1] A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: two-grid

algorithms for the Navier-Stokes equations, Numer. Math., 68 (1994), 189–213.

[2] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, vol. 15 of Texts

in Applied Mathematics, Springer-Verlag, New York, Second ed., 2002.

[3] D.W. Condiff and J.S. Dahler, Fluid mechanical aspects of antisymmetric stress, Phys. Fluids, 7

(1964), 842–854.

[4] J. Dahler and L. Scriven, Angular momentum of continua, Nature, 192 (1961), 36–37.

[5] A.E. Diegel, C. Wang, X. Wang, and S.M. Wise, Convergence analysis and error estimates for

a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system, Numer.

Math., 137 (2017), 495–534.

[6] W.E and J.G. Liu, Projection method. I. Convergence and numerical boundary layers, SIAM J.

Numer. Anal., 32 (1995), 1017–1057.

[7] W.E and J.G. Liu, Essentially compact schemes for unsteady viscous incompressible flows, J.

Comput. Phys., 126 (1996), 122–138.

[8] W.E and J.G. Liu, Projection method. III. Spatial discretization on the staggered grid, Math.

Comp., 71 (2002), 27–47.

[9] A. Eringen, Microcontinuum Field Theories. II. Fluent Media, 01 2001.

[10] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18.

[11] H. Gao, Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor

equations, J. Sci. Comput., 66 (2016), 504–527.
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[19] A.T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes

equations, IMA J. Numer. Anal., 20 (2000), 633–667.

[20] Y.L. Jiang and Y.B. Yang, Analysis of some projection methods for the incompressible fluids

with microstructure, J. Korean Math. Soc., 55 (2018), 471–506.

[21] G.  L ukaszewicz, Micropolar fluids, Modeling and Simulation in Science, Engineering and Tech-
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