- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a positivity-preserving finite element method for solving the three-dimensional quantum drift-diffusion model. The model consists of five nonlinear elliptic equations, and two of them describe quantum corrections for quasi-Fermi levels. We propose an interpolated-exponential finite element (IEFE) method for solving the two quantum-correction equations. The IEFE method always yields positive carrier densities and preserves the positivity of second-order differential operators in the Newton linearization of quantum-correction equations. Moreover, we solve the two continuity equations with the edge-averaged finite element (EAFE) method to reduce numerical oscillations of quasi-Fermi levels. The Poisson equation of electrical potential is solved with standard Lagrangian finite elements. We prove the existence of solution to the nonlinear discrete problem by using a fixed-point iteration and solving the minimum problem of a new discrete functional. A Newton method is proposed to solve the nonlinear discrete problem. Numerical experiments for a three-dimensional nano-scale FinFET device show that the Newton method is robust for source-to-gate bias voltages up to 9V and source-to-drain bias voltages up to 10V.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2206-m2021-0353}, url = {http://global-sci.org/intro/article_detail/jcm/21679.html} }In this paper, we propose a positivity-preserving finite element method for solving the three-dimensional quantum drift-diffusion model. The model consists of five nonlinear elliptic equations, and two of them describe quantum corrections for quasi-Fermi levels. We propose an interpolated-exponential finite element (IEFE) method for solving the two quantum-correction equations. The IEFE method always yields positive carrier densities and preserves the positivity of second-order differential operators in the Newton linearization of quantum-correction equations. Moreover, we solve the two continuity equations with the edge-averaged finite element (EAFE) method to reduce numerical oscillations of quasi-Fermi levels. The Poisson equation of electrical potential is solved with standard Lagrangian finite elements. We prove the existence of solution to the nonlinear discrete problem by using a fixed-point iteration and solving the minimum problem of a new discrete functional. A Newton method is proposed to solve the nonlinear discrete problem. Numerical experiments for a three-dimensional nano-scale FinFET device show that the Newton method is robust for source-to-gate bias voltages up to 9V and source-to-drain bias voltages up to 10V.