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Abstract

In this paper, we propose a positivity-preserving finite element method for solving the

three-dimensional quantum drift-diffusion model. The model consists of five nonlinear

elliptic equations, and two of them describe quantum corrections for quasi-Fermi levels.

We propose an interpolated-exponential finite element (IEFE) method for solving the two

quantum-correction equations. The IEFE method always yields positive carrier densities

and preserves the positivity of second-order differential operators in the Newton lineariza-

tion of quantum-correction equations. Moreover, we solve the two continuity equations

with the edge-averaged finite element (EAFE) method to reduce numerical oscillations of

quasi-Fermi levels. The Poisson equation of electrical potential is solved with standard

Lagrangian finite elements. We prove the existence of solution to the nonlinear discrete

problem by using a fixed-point iteration and solving the minimum problem of a new dis-

crete functional. A Newton method is proposed to solve the nonlinear discrete problem.

Numerical experiments for a three-dimensional nano-scale FinFET device show that the

Newton method is robust for source-to-gate bias voltages up to 9V and source-to-drain

bias voltages up to 10V.
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1. Introduction

As the size of modern semiconductor devices goes to nanometers, quantum mechanical

phenomena become prominent and must be considered in numerical simulations. Classical drift-

diffusion (DD) equations are not enough to describe these quantum effects arising, for example,

from strong electron confinement at the interface between silicon and silicon-dioxide [8, 18].

In [1–3], Ancona and Iafrate derived a macroscopic model, called quantum drift-diffusion (QDD)

model, which generalizes the classical DD model by incorporating quantum corrections to quasi-

Fermi levels. Since then, the model has been used widely for simulating semiconductor devices.
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In 1997, Unterreiter studied the thermal equilibrium solution of a generic bipolar QDD model.

He proved that the energy functional of the system has a unique minimizer which is the thermal

equilibrium solution to the QDD model, and that the QDD model is reduced to classical DD

model as the quantum-correction parameter ε→ 0 [17]. In 1998, Ben Abdallah and Unterreiter

studied a bipolar QDD model which includes generation-recombination terms. They proved

the existence of solutions for a general setting including the case in thermal equilibrium [5].

In the numerical aspect, Pinnau and Unterreiter first studied the finite element method for

bipolar QDD model [13]. They proposed a quasi-gradient method for the thermal equilibrium

model and proved the strong convergence of iterative solutions under H1-norm. For the com-

putation of current-voltage characteristics, they proposed an extended Gummel-iteration and

proved the convergence of iterative solutions for small applied voltages. In 2004, Pinnau ana-

lyzed the exponentially fitted finite element scheme for one-dimensional unipolar QDD model.

He proved the existence of discrete solutions and derived uniform error bounds which allow for

the semiclassical limit [15]. We also refer to [14] for a review on the QDD model. In [8], de

Falco, Gatti, Lacaita, and Sacco proposed a generalized Gummel iteration and a finite element

method for solving the QDD model. They simulated a nanoscale MOSFET device which has

a two-dimensional geometry. In [9], de Falco, Jerome, and Sacco delivered an analysis for the

generalized Gummel algorithm and proved the existence of the solution to the QDD model by

using fixed-point iteration and extremum principles.

The QDD model is a coupled system of five nonlinear elliptic equations: one for the electric

potential, two for quasi-Fermi levels of electrons and holes, and the other two for quantum

corrections to quasi-Fermi levels. Numerical solutions for the QDD model are very challenging,

particularly, in the case of high bias voltages. Theoretical analysis and efficient numerical meth-

ods are far from satisfactory. For high bias voltages, the convergence of fixed-point iterations

could be slow and inefficient in practical simulations. It is known that Newton-type iterations

are more efficient than fixed-point iterations if the initial guess is close to the true solution. Our

purpose in this paper is to propose a Newton method for solving the QDD model. Combining

with the IEFE discretization for quantum-correction equations and the EAFE discretization

for continuity equations, the Newton method is convergent and robust for high bias voltages in

simulating a three-dimensional FinFET device.

Another issue for the QDD model or the DD model is how to preserve the positivity of

numerical carrier densities. A popular way to deal with the issue is to express the electron

density as an exponential function n = exp(u) and compute the numerical approximation uh

of u. This yields a positive density nh = exp(uh) naturally. Similar ideas have been used to

other models. We refer to [7, 10, 11] for nonlinear fourth order parabolic equation, to [4, 15]

for QDD equations, and to [6, 12, 16] for Poisson-Nernst-Planck (PNP) equations. However,

this technique will transform all linear terms of n into nonlinear terms of u. Newton-type

linearization of these nonlinear terms usually break the symmetry and positivity of the problem

and lead to an indefinite problem. Here we propose an IEFE method to descretize square roots

of carrier densities. The method preserves the positivity of second-order differential operators

in the Newton linearization of quantum-correction equations.

In this paper, we propose a robust numerical method for solving the QDD model. The

merits of the method are summarized as follows.

1. We express the square roots of carrier densities as ρ = exp(ψn) and σ = exp(ψp) for

two potential functions ψn and ψp and derive an equivalent QDD model. We propose an

IEFE method to discretize the second-order terms −∆eψn and −∆eψp so that the Newton-


