- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a new least squares finite element method to solve the Stokes problem with two sequential steps. The approximation spaces are constructed by the patch reconstruction with one unknown per element. For the first step, we reconstruct an approximation space consisting of piecewise curl-free polynomials with zero trace. By this space, we minimize a least squares functional to obtain the numerical approximations to the gradient of the velocity and the pressure. In the second step, we minimize another least squares functional to give the solution to the velocity in the reconstructed piecewise divergence-free space. We derive error estimates for all unknowns under both $L^2$ norms and energy norms. Numerical results in two dimensions and three dimensions verify the convergence rates and demonstrate the great flexibility of our method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2104-m2020-0231}, url = {http://global-sci.org/intro/article_detail/jcm/21169.html} }We propose a new least squares finite element method to solve the Stokes problem with two sequential steps. The approximation spaces are constructed by the patch reconstruction with one unknown per element. For the first step, we reconstruct an approximation space consisting of piecewise curl-free polynomials with zero trace. By this space, we minimize a least squares functional to obtain the numerical approximations to the gradient of the velocity and the pressure. In the second step, we minimize another least squares functional to give the solution to the velocity in the reconstructed piecewise divergence-free space. We derive error estimates for all unknowns under both $L^2$ norms and energy norms. Numerical results in two dimensions and three dimensions verify the convergence rates and demonstrate the great flexibility of our method.