- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In countless applications, we need to reconstruct a $K$-sparse signal $\mathbf{x}\in\mathbb{R}^n$ from noisy measurements $\mathbf{y}=\mathbf{\Phi}\mathbf{x}+\mathbf{v}$, where $\mathbf{\Phi}\in\mathbb{R}^{m\times n}$ is a sensing matrix and $\mathbf{v}\in\mathbb{R}^m$ is a noise vector. Orthogonal least squares (OLS), which selects at each step the column that results in the most significant decrease in the residual power, is one of the most popular sparse recovery algorithms. In this paper, we investigate the number of iterations required for recovering $\mathbf{x}$ with the OLS algorithm. We show that OLS provides a stable reconstruction of all $K$-sparse signals $\mathbf{x}$ in $\lceil2.8K\rceil$ iterations provided that $\mathbf{\Phi}$ satisfies the restricted isometry property (RIP). Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2104-m2020-0093}, url = {http://global-sci.org/intro/article_detail/jcm/21167.html} }In countless applications, we need to reconstruct a $K$-sparse signal $\mathbf{x}\in\mathbb{R}^n$ from noisy measurements $\mathbf{y}=\mathbf{\Phi}\mathbf{x}+\mathbf{v}$, where $\mathbf{\Phi}\in\mathbb{R}^{m\times n}$ is a sensing matrix and $\mathbf{v}\in\mathbb{R}^m$ is a noise vector. Orthogonal least squares (OLS), which selects at each step the column that results in the most significant decrease in the residual power, is one of the most popular sparse recovery algorithms. In this paper, we investigate the number of iterations required for recovering $\mathbf{x}$ with the OLS algorithm. We show that OLS provides a stable reconstruction of all $K$-sparse signals $\mathbf{x}$ in $\lceil2.8K\rceil$ iterations provided that $\mathbf{\Phi}$ satisfies the restricted isometry property (RIP). Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.