- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Under two hypotheses of nonconforming finite elements of fourth order elliptic problems, we present a side–patchwise projection based error analysis method (SPP–BEAM for short). Such a method is able to avoid both the regularity condition of exact solutions in the classical error analysis method and the complicated bubble function technique in the recent medius error analysis method. In addition, it is universal enough to admit generalizations. Then, we propose a sufficient condition for these hypotheses by imposing a set of in some sense necessary degrees of freedom of the shape function spaces. As an application, we use the theory to design a $P_3$ second order triangular $H^2$ non-conforming element by enriching two $P_4$ bubble functions and, another $P_4$ second order triangular $H^2$ nonconforming finite element, and a $P_3$ second order tetrahedral $H^2$ non-conforming element by enriching eight $P_4$ bubble functions, adding some more degrees of freedom.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1811-m2018-0162}, url = {http://global-sci.org/intro/article_detail/jcm/13691.html} }Under two hypotheses of nonconforming finite elements of fourth order elliptic problems, we present a side–patchwise projection based error analysis method (SPP–BEAM for short). Such a method is able to avoid both the regularity condition of exact solutions in the classical error analysis method and the complicated bubble function technique in the recent medius error analysis method. In addition, it is universal enough to admit generalizations. Then, we propose a sufficient condition for these hypotheses by imposing a set of in some sense necessary degrees of freedom of the shape function spaces. As an application, we use the theory to design a $P_3$ second order triangular $H^2$ non-conforming element by enriching two $P_4$ bubble functions and, another $P_4$ second order triangular $H^2$ nonconforming finite element, and a $P_3$ second order tetrahedral $H^2$ non-conforming element by enriching eight $P_4$ bubble functions, adding some more degrees of freedom.