- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
An augmented Lagrangian trust region method with a bi-object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1705-m2016-0820}, url = {http://global-sci.org/intro/article_detail/jcm/12264.html} }An augmented Lagrangian trust region method with a bi-object strategy is proposed for solving nonlinear equality constrained optimization, which falls in between penalty-type methods and penalty-free ones. At each iteration, a trial step is computed by minimizing a quadratic approximation model to the augmented Lagrangian function within a trust region. The model is a standard trust region subproblem for unconstrained optimization and hence can efficiently be solved by many existing methods. To choose the penalty parameter, an auxiliary trust region subproblem is introduced related to the constraint violation. It turns out that the penalty parameter need not be monotonically increasing and will not tend to infinity. A bi-object strategy, which is related to the objective function and the measure of constraint violation, is utilized to decide whether the trial step will be accepted or not. Global convergence of the method is established under mild assumptions. Numerical experiments are made, which illustrate the efficiency of the algorithm on various difficult situations.