- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A filled function is proposed by R.Ge[2] for finding a global minimizer of a function of several continuous variables. In [4], an approach for finding a global integer minimizer of nonlinear function using the above filled function is given. Meanwhile a major obstacle is met: if $ρ > 0$ is small, and $||x_I-\overset{*}{x}_I||$ is large, where $x_I$ - an integer point, $\overset{*}{x}_I$ - a current local integer minimizer, then the value of the filled function almost equals zero. Thus it is difficult to recognize the size of the value of the filled function and can not find the global integer minimizer of nonlinear function. In this paper, two new filled functions are proposed for finding global integer minimizer of nonlinear function, and the new filled function improves some properties of the filled function proposed by R. Ge [2].
Some numerical results are given, which indicate the new filled function (4.1) to find global integer minimizer of nonlinear function is efficient.
A filled function is proposed by R.Ge[2] for finding a global minimizer of a function of several continuous variables. In [4], an approach for finding a global integer minimizer of nonlinear function using the above filled function is given. Meanwhile a major obstacle is met: if $ρ > 0$ is small, and $||x_I-\overset{*}{x}_I||$ is large, where $x_I$ - an integer point, $\overset{*}{x}_I$ - a current local integer minimizer, then the value of the filled function almost equals zero. Thus it is difficult to recognize the size of the value of the filled function and can not find the global integer minimizer of nonlinear function. In this paper, two new filled functions are proposed for finding global integer minimizer of nonlinear function, and the new filled function improves some properties of the filled function proposed by R. Ge [2].
Some numerical results are given, which indicate the new filled function (4.1) to find global integer minimizer of nonlinear function is efficient.