- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A practical parallel difference scheme for parabolic equations is constructed as follows: to decompose the domain Ω into some overlapping subdomains, take flux of the last time layer as Neumann boundary conditions for the time layer on inner boundary points of subdomains, solve it with the fully implicit scheme on each subdomain, then take correspondent values of its neighbor subdomains as its values for inner boundary points of each subdomain and mean of its neighbor subdomain and itself at overlapping points. The scheme is unconditionally convergent. Though its truncation error is $O(h+\tau)$the convergent order for the solution can be improved to $O(h^2+\tau)$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10333.html} }A practical parallel difference scheme for parabolic equations is constructed as follows: to decompose the domain Ω into some overlapping subdomains, take flux of the last time layer as Neumann boundary conditions for the time layer on inner boundary points of subdomains, solve it with the fully implicit scheme on each subdomain, then take correspondent values of its neighbor subdomains as its values for inner boundary points of each subdomain and mean of its neighbor subdomain and itself at overlapping points. The scheme is unconditionally convergent. Though its truncation error is $O(h+\tau)$the convergent order for the solution can be improved to $O(h^2+\tau)$.