- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper provides a convergence analysis of a fractional-step projection method for the controlled-source electromagnetic induction problems in heterogenous electrically conduting media by means of finite element approximations. Error estimates in finite time are given. And it is verified that provided the time step $\tau$ is sufficiently small, the proposed algorithm yields for finite time $T$ an error of $\mathcal{O}(h^s+\tau)$) in the $L^2$-norm for the magnetic field $\boldsymbol{H},$ where $h$ is the mesh size and $1/2 < s ≤ 1$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10305.html} }This paper provides a convergence analysis of a fractional-step projection method for the controlled-source electromagnetic induction problems in heterogenous electrically conduting media by means of finite element approximations. Error estimates in finite time are given. And it is verified that provided the time step $\tau$ is sufficiently small, the proposed algorithm yields for finite time $T$ an error of $\mathcal{O}(h^s+\tau)$) in the $L^2$-norm for the magnetic field $\boldsymbol{H},$ where $h$ is the mesh size and $1/2 < s ≤ 1$.