- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Combined Hybrid Finite Element Method for Plate Bending Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-21-347,
author = {Zhou , Tian-Xiao and Xie , Xiao-Ping},
title = {A Combined Hybrid Finite Element Method for Plate Bending Problems},
journal = {Journal of Computational Mathematics},
year = {2003},
volume = {21},
number = {3},
pages = {347--356},
abstract = {
In this paper, a combined hybrid method is applied to finite element discretization of plate bending problems. It is shown that the resultant schemes are stabilized, i.e., the convergence of the schemes is independent of inf-sup conditions and any other patch test. Based on this, two new series of plate elements are proposed.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10263.html} }
TY - JOUR
T1 - A Combined Hybrid Finite Element Method for Plate Bending Problems
AU - Zhou , Tian-Xiao
AU - Xie , Xiao-Ping
JO - Journal of Computational Mathematics
VL - 3
SP - 347
EP - 356
PY - 2003
DA - 2003/06
SN - 21
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10263.html
KW - Combined hybrid finite element, Weakly compatible.
AB -
In this paper, a combined hybrid method is applied to finite element discretization of plate bending problems. It is shown that the resultant schemes are stabilized, i.e., the convergence of the schemes is independent of inf-sup conditions and any other patch test. Based on this, two new series of plate elements are proposed.
Zhou , Tian-Xiao and Xie , Xiao-Ping. (2003). A Combined Hybrid Finite Element Method for Plate Bending Problems.
Journal of Computational Mathematics. 21 (3).
347-356.
doi:
Copy to clipboard