- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Asymptotically Optimal Successive Overrelaxation Methods for Systems of Linear Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-21-603,
author = {Bai , Zhong-Zhi and Chi , Xue-Bin},
title = {Asymptotically Optimal Successive Overrelaxation Methods for Systems of Linear Equations},
journal = {Journal of Computational Mathematics},
year = {2003},
volume = {21},
number = {5},
pages = {603--912},
abstract = {
We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust than the classical successive overrelaxation method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10247.html} }
TY - JOUR
T1 - Asymptotically Optimal Successive Overrelaxation Methods for Systems of Linear Equations
AU - Bai , Zhong-Zhi
AU - Chi , Xue-Bin
JO - Journal of Computational Mathematics
VL - 5
SP - 603
EP - 912
PY - 2003
DA - 2003/10
SN - 21
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/10247.html
KW - Successive Overrelaxation Methods, System of Linear Equations.
AB -
We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust than the classical successive overrelaxation method.
Bai , Zhong-Zhi and Chi , Xue-Bin. (2003). Asymptotically Optimal Successive Overrelaxation Methods for Systems of Linear Equations.
Journal of Computational Mathematics. 21 (5).
603-912.
doi:
Copy to clipboard