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Abstract

We present a class of asymptotically optimal successive overrelaxation methods for
solving the large sparse system of linear equations. Numerical computations show that
these new methods are more efficient and robust than the classical successive overrelaxation
method.
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1. Introduction

Consider the solution of system of linear equations
Ar=b, A e R"" nonsingular, and z,b € R"”, (1)

where the coefficient matrix A € R"™*" is large sparse, and usually, has certain particular
structures and properties, b € R™ is a given right-hand-side vector, and x € R" is the unknown
vector.

The successive overrelaxation (SOR) method [9] provides one powerful tool for solving the
system of linear equations (1), in particular, when an optimal, or at least, a nearly optimal
relaxation factor is easily obtainable. However, except we have an analytic formula about the
optimal relaxation factor for the consistently ordered p-cyclic matrix [9, 6, 2], we know little
about its choice in actual computations for a general matrix. Even the analytic formula is
practically unapplicable, because it involves the spectral radius of the corresponding Jacobi
iteration matrix, whose computation is considerably costly and complicated. This heavily
restricts efficient applications of the SOR method to a wider range of real-world problems.

In this paper, by choosing the relaxation factor in a dynamic fashion according to known
information at the current iterate step, we propose a class of new SOR methods, called as
asymptotically optimal SOR methods (AOSOR methods), for solving the system of linear equa-
tions (1).

The AOSOR methods determine the relaxation factors iteratively through minimizing either
the A-norm of the error when the coefficient matrix A € R™*" is a symmetric positive definite
matrix, or the 2-norm of the residual when it is a general unsymmetric nonsingular matrix,
at each step of their iterates, with a reasonably extra cost. In actual computations, they
show better numerical behaviours than the SOR method for both symmetric positive definite
matrix and general unsymmetric nonsingular matrix. Numerical experiments show that the
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new AOSOR methods are feasible, efficient and robust for solving large sparse system of linear
equations (1).

2. The SOR Method and its Properties

Without loss of generality, we assume that the diagonal matrix of the matrix 4 € R™*" is
the identity I. Let —L and —U be strictly lower and strictly upper triangular matrices of the
matrix A € R"*", respectively. Then it holds that A = I — L —U. The SOR method for solving
the system of linear equations (1) can be expressed as

2 = L) + gw),

where
Lw)=(I-wLl) Y1 -wI+wl), gw)=wl-wL) b (2)
If we further introduce matrices
M(w) :%(z—wL), Nw) = %((1—w)]+wU), 3)

then it holds that
L) = M) N (@), g(w) = M),

If w = 1, the SOR method simplifies to the Gauss-Seidel method. And various generaliza-
tions of the SOR method can be found in [1, 3, 4, 7, §].

It is well-known that the SOR method converges to the unique solution x* of the system
of linear equations (1) when the coefficient matrix A € R™*" is an M-matrix, an H-matrix,
an irreducibly diagonally dominant matrix, and a symmetric positive definite matrix, respec-
tively, under certain restrictions on the relaxation factor. More precisely, we have the following
conclusions.

Theorem 2.1. Let A € R™*" be a nonsingular matriz, and its diagonal entries be all nonzero.
Denote D = diag(A), B=D — A, and J = D 'B. Then the SOR method is convergent to the
unique solution of the system of linear equations (1), if

(a) A€ R™" is an M-matriz, and 0 < w < #(J); [5]
(b) AeR™™™ is an H-matriz, and 0 < w < ﬁ(m); [5]

(c) AeR"™™ is an irreducibly diagonally dominant matriz, and 0 < w < #(\JD’. [5]

(d) A€ R™" is a symmetric positive definite matriz, and 0 < w < 2. [9]

Here, p(-) and |-| denote the spectral radius and the absolute value of the corresponding matriz,
respectively.

Moreover, for the consistently ordered p-cyclic matrix class, we have the following precise
description about the optimum relaxation factor of the SOR method.
Theorem 2.2°1. Let A € R™" be a nonsingular and consistently ordered p-cyclic matriz,
with nonzero diagonal entries. Denote D = diag(A), B=D — A, and J = D7'B. If w # 0,
and X\ is a nonzero eigenvalue of the matriz L(w) of (2) and if p satisfies

A +w—1)P = MNP lyPyP (4)

then p is an eigenvalue of the Jacobi iteration matriz J. Conversely, if u is an eigenvalue of J
and \ satisfies (4), then X is an eigenvalue of L(w).

Moreover, the optimum relazation factor wop: which minimizes the asymptotic convergence
rate of the SOR method is the unique positive real root (less than p/(p — 1)) of the equation

(P(Nwopt)? = (07 (p =)' 7P (wopt — 1), (5)
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where p(J) denotes the spectral radius of the Jacobi iteration matriz J. In particular, for p = 2,
wopt can be expressed equivalently as
2
L) ©

2
””“‘W‘”(um

Note that the formulas (4)-(6) are of only theoretical meanings, and they are far away from
actual applications, since calculating the spectral radius of the Jacobi iteration matrix requires
an impractical amount of computation. To derive a reasonably applicable rule for choosing
the relaxation factor, we need to investigate the properties of the norms of error and residual
associated with the SOR method.

To this end, we denote by P and rP the error and residual of the SOR method at the p-th
iterate step, respectively, i.e., e? = 2P — x* and r? = b — AxP, where x* is the exact solution of
the system of linear equations (1), and write H(w) = I — AM(w)~"!, where M(w) is defined by
(3). Then the following result holds.

Theorem 2.3. Let {27} be an iterate sequence generated by the SOR method. Then

(a) if A€ R™"™ is a symmetric positive definite matriz, it holds that
_ d 2 _
[P % = (") H(W) A H(w)r? and %(”51’“”3,) = —E(T”)TH(GJ)TM(W) “re;

(b) if A e R"™"™ is a general unsymmetric nonsingular matriz, it holds that

2

77 = (P H@TH@P and () = = S0 H) T AM)

Proof. By straightforward computations we have
P[5 = (P, AePTT) = (P + M(w)7'rP, AeP + AM(w)~'rP)
= (AN AM(W) P —rP), AM(w) 1P — rP)
= (A YH(w)r?, H(w)rP)
= (r)TH(W)T A~ "H (w)rP

and
7B = (17 = AM(@) 1 — AM() )
= (H(w)r’, H(w)r?)
= (r)TH(w) T H(w)rP.
This proves the first identities in both (a) and (b).
Because
dMW)™h) _ 1 dM(w)) 1 dMw)) _ 1
D) - My B gy g A Ly
we have »
d(/\/lé:)) ) %/\/l(w)_2 and d(?;iw)) = —%AM(w)_Q
Hence,
T
ez = 07 (LB o + () ) (LD
= - % (") M) ) H(w)r? + ()T H(w) M(w)"*rP)
2
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and

T
LA B) = ()T (W) H(w)r? + ()T H(w)" (d(—Ziw))> o

= — = (M) TAM@) ) TH@)rP + () H(w) T AM(w) ~*rP)

= ) THW) AM() .

These are just the second identities in both (a) and (b).
Theorem 2.3 is the basis for us to establish the asymptotically optimal SOR methods for both
symmetric positive definite and general unsymmetric nonsingular systems of linear equations.

3. The Asymptotically Optimal SOR Methods

Because L € R™*" is a strictly lower triangular matrix, we know that the matrix M (w) of
(3) is invertible and L™ = O holds, where O represents the zero matrix. Therefore,

MW ™ =w(l —wl) T =w z_:(wL)k.
k=0

Evidently, M(w)~! could be approximated by a lower-order truncation of the matrix series on
the right-hand side of the above matrix identity. For example,
MW) P mw +wL 4+ W L?) xw(l +wl) ~ Wi,

or more generally,

M)~ w(I + Bl + 12w L2) = W(w, B,7), (7)
where 3 and ~ are two arbitrary parameters. Clearly, it holds that

W(w,0,0) =wl, W(w,1,0) =w(l +wL), W(w,1,1)=w( +wL+ w?L?).
According to (7), we have
Hw)=T—AMW) ' ~ T - AW(w,3,7) = B(w, 3,7)
and
M) 2 W(w, ,7)? = W (I + 26wl + (5> +29°)0’L?) = V(w, B,7).

Now, by applying the above approximations to Theorem 2.3, we can obtain

L Uert12) » ) B, 8,9 V(w, 5,70

= =2(rP)T(I — wA(I + BwL + v*w?L?))T
X (I +2BwL + (8% + 29} w? L?)rP

= =2((r?)TrP + w(rP)T(2BL — A)r?
+w? (rP)T((8% + 292) L2 — 2BAL — BLT A)r? (8)
()T (8% + 29°)AL? + 26° LT AL + »*(L")* A)r?
—wt(rP)T(B(8 +29*) LT AL + 2B~*(LT)? AL)r?
—wSy? (8% + 297) (rP) T (LT)? AL*rP)

= —2(6(\0 + &1w + a2w2 - a3w3 — &4w

X

4 _ a5w5)’

when A € R"*" is a symmetric positive definite matrix, where
ao = (rP)Trp,
ay = 28(rP) T Lr? — (r?)T Arp,
Ay = (8% + 293 (r?) T L2r? — 28(rP)T ALr? — B(r?)T LT Arp,
Gy = (B2 + 292)(r?) T AL?r? + 282(r?)T LT ALy 4 v2(r2)T (LT)2 Ar?, )
8 = B(6 +29)(r7) LT AL* + 265°(r7)T (LT )AL,
a5 = 7*(8% +29%) (") T (LT)* AL r?;
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and

)T B, B,7)T AV, B, 1)

= —2(rP)T(I — wA(I + BwL + y*w?L?)T A
X (I +2BwL + (3? + 293 w?L?)r?
= —2((rP)T ArP + w(r?)T(2BAL — AT A)rP
+w2(rP)T (82 + 292)AL? — 2BAT AL — BLT AT A)rp (10)
~B ()T (8% + 292)ATAL? + 232 LT AT AL + 7> (LT)? AT A)rP
—! (1) (B(B + 29" LT AT AL + 26v>(LT)? AT AL)r?
—w (8% +29%) ()T (L) AT AL*r?)
= —2(3\0 + glw + 8\2&}2 — 3\3(4)3 — 3\4(04 — 3\5(4.}5),
when A € R"*" is a general nonsingular unsymmetric matrix, where
(5 = (rP)T Arp,
81 = 28(rP)TALr? — (rP)T AT App,
% 0y = (8% + 29)(r?)TAL*1? — 2B(r?)T AT ALr? — B(r?)T LT AT Ay?,
03 = (B2 +292)(rP)TAT AL?rP 4+ 232 (rP)T LT AT ALr? + 42 (rP)T(LT)2 AT ArP,
8y = B(B> +29)(rP)TLT AT AL*rP + 20> (r?)T (LT)? AT ALr?,
05 =728 + 29°) (7)) (LT P ATALr.
The above investigations are summarized in the following theorems.
Theorem 3.1. Let {zP}22, be an iterate sequence generated by the SOR method, and assume

X

s (P13

A € R™" be a symmetric positive definite matriz. Then either the solution of the system of
linear equations (1) is ¥, or a reasonable approzimation wP to argmin, - |[eP*!| 4 is given by
a positive real Toot of the nonlinear equation

1+ oqw + aw? — asw® — auw? — asw® =0, (12)
where
260%)"u — (r7)" 07
ap = ’
rp)Trp
(8% +29°)(r")TtP — 3B(vP) "uP
Qg = )
(TP}TTP
(8> +39%) (P)"#P + 287 (uP) T sP
a3 = ) (13)
rP)TrP
B+ 4y ) Twr
4 — Tp TTp )
Y2(8 4+ 29*) (") TwP
a5 = )
\ )T
and
uP = LrP, P = ArP, P = LuP, sP = AuP, wP? = At*. (14)

This wP could be got by approximately solving the nonlinear equation (12) with the Newton
method.

Proof. From (8) we know that L (||le?**[|%) = 0 is approximately satisfied if w solves the
nonlinear equation

3

&0 + alw + &2w2 - agw - a4w4 - a5w5 = 0,

where ai(k =0,1,---,5) are defined by (9). When ay = 0, we know that 7» = 0 and zP is a
solution of the system of linear equations (1). When ag # 0, by directly dividing @y through
the above equation, we immediately get the result of this theorem.

Theorem 3.2. Let {zP}72, be an iterate sequence generated by the SOR method, and assume

A € R™™ be a general unsymmetric nonsingular matriz. Then either (r?)T Ar? = 0, or a rea-
sonable approzimation wP to argmin,, . ||rP* |2 is given by a positive real root of the nonlinear
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equation
1+ 61w + 6ow? — d3w® — dyw” — d5w° =0, (15)
where
( 5 = 28(rP)TsP — (vP)ToP
LT
5, = (B4 )07 w? — 3300) st
(rp)Typ ’
e (5 + 372)(v”)72wp +20%(s”)s? (16)
()T |
5 _ B+ ()
4 — (’I”p)T'Up )
5. V(B2 +29°) (wh)Tw?
N O
and
uP = LrP, P = ArP, P = LuP, sP = AuP, wP = At*. (17)

This wP could be got by approximately solving the nonlinear equation (15) with the Newton
method.

Proof. From (10) we know that L (||rP*1(|3) = 0 is approximately satisfied if w solves the
nonlinear equation

3\0 + glw + 3\2(4}2 - 3\3(4)3 - 3\4(4)4 - 3\5(4}5 = 0,
where 3 (k=0,1,---,5) are defined by (11). When S # 0, by directly dividing S through the
above equation, we immediately get the result of this theorem.
We remark that in Theorem 3.2, when &, = (r?)T ArP = 0 and r? # 0, we can always choose
ip = minj<i<s{i | 8 # 0} such that a reasonable approximation w? to argmin, o||r?*|| is
given by a positive real root of the nonlinear equation

1+ 6i0+1w + -+ 65w57i0 = 07

where N
6,
Ziotk for 1<ip+k<2,
8y
6i0+k = 3\
_Zotk  for  3<ig+k <5
8y

Based upon Theorems 3.1 and 3.2, we can establish the following asymptotically optimal
SOR methods in cases that the coefficient matrix A € R™™" of the system of linear equa-
tions (1) is a symmetric positive definite matrix or a general unsymmetric nonsingular matrix,
respectively.

Method 3.1 (AOSOR METHOD (SYMMETRIC POSITIVE DEFINITE CASE)).
Given an initial vector 2° € R", and two parameters 8 and . For p = 0,1,2,... until {27}
convergence,

1. Compute r? = b — Az?
2. Compute uP, vP, wP, s? and t? by (14)

Compute ai(k =1,2,---,5) by (13)

- w

Solve (12) to some prescribed precision by the Newton method and get w?

5. Solve (D —wPL)y? = r? to get y”
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6. Compute 2P+ = 2P + wPy?

Method 3.2 (AOSOR METHOD (GENERAL UNSYMMETRIC NONSINGULAR CASE)).
Given an initial vector z° € R™, and two parameters 3 and . For p = 0,1,2,... until {z”}
convergence,

1. Compute r? = b — AxP
2. Compute uP, vP, wP, s? and t? by (17)

3. Compute 0 (k = 1,2,---,5) by (16)

4. Solve (15) to some prescribed precision by the Newton method and get w?
5. Solve (D — wPL)y? = rP to get y?

6. Compute zPT! = 2P 4+ wPy?

The costs of Methods 3.1 and 3.2 are the same. We need to store 8 vectors z, y, 7, u, v,
w, s and ¢. Each iteration requires 7 matrix-vector products (four to compute Az, and the
other three to compute Lr, Lu and Ly), 9 inner products (to compute ay(k = 1,2,---,5) in
Method 3.1 or 0x(k = 1,2,---,5) in Method 3.2), 3 operations of the form £z, 3 operations
of the form = + y, and 30 operations of the form ¢ - 7, where £ and 7 are scalars. We refer
the readers to Table 3.1 for details. Therefore, if we assume that the number of nonzeros on
each row of the matrix A € R"*™ is m, and that that on each row of the matrix L € R"*"
is my, then the cost of each iterate of either Method 3.1 or Method 3.2 is approximately
[(8m + 6my + 17)n — 3(m? — m, — 9)]. Here, we did not count the flops in step 4 for solving the
nonlinear equation (12) or (15) by the Newton method. Because the cost of the SOR method
at each iterate step is [2(m + mg¢ + 2)n — (m? — my)], the cost of the AOSOR method is about
% times of that of the SOR method when n is reasonably large.

Table 3.1. Operation forms and flops at each step of the iteration

Oper. Number of Iteration Steps
Form | Step 1 | Step 2 | Step 3 | Step 5 | Step 6 | Total Total Flops
Ax 1 3 0 0 0 4 4[(2m — 1)n]
Lx 0 2 0 1 0 3 3[(2me — 1)n — me(me — 1)]
(z,y) 0 0 9 0 0 9 9[2n — 1]
&y 0 0 0 2 1 3 3[n
Tty 1 0 0 1 1 3 3[n
&-n 0 0 30 0 0 30 30[1]

4. Numerical Results

The test examples are the systems of linear equations (1), which arise from the five-point dif-
ference discretization, with mesh spacing h, of the following two-dimensional partial differential
equation with Dirichlet boundary condition:

0’u  0%u ou ou
e — = + b+ (= + 4ou t1,t), (t1,t2) €9,
6t% 8t§ £ Catz f( 1 2) ( 1 2) (18)
(tl ) t

oty
U(tl,tz) = 0, 2) S 89,

where ¢, ¢ and o are constants, © is the unit square (0,1) x (0,1) in R?, dQ the boundary of
the domain Q, and f(t1,25) : @ — R* a given function. When ¢ = ¢ = o = 0.0, (18) reduces
to the Poisson equation, and when £ = ¢ = 0 and o # 0, it turns to the Helmholtz equation.
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If u; ; and f;; denote approximations to the solution of (18) and to the function f(t1,%2) at
the grid point (ih, jh), respectively, then a discretized approximation to (18) is the following
system of linear equations

Palig1j + MUi—1j + p2ije T 02uig1 + potig = h2fij, (19)

i:j = 1727"'7N7
where (N + 1)h =1, and

{ u0:4(1+0h2)7 M1 :_(l_lgh)v K2 :_(1_%Ch)7

T :—(1+%§h)a n2 = —(1+ 5Ch).

Letting

T
T = (uLl:"'7u1,N7u2,17"'7”2,N7"'7’U'N717"'7’U'N7N)7

we can rewrite the system of linear equations (19) in the form of (1), with

T /JQI
772] T /,LQI
772.[ T 'LL2I
nel T
Ho M1
Mo M1
T = .. - .. € RNVXN
m Ko M1
m Mo

and
bT = h2(f1,17"'7f1,N;f2,1;"'7f2,N7'“)fN,l)'“)fN,N)a

where n = N x N.

The matrix A € R"*" is a symmetric positive definite matrix when £ = ¢ = 0 and ¢ > 0, and
an unsymmetric but positive definite matrix when o > 0 and (i) 0 < max{¢h,(h} < 2, or (ii)
0<Eh<2,2<Ch<2+40h? or (iii) 0 < Ch < 2,2 < Eh < 2+40h?, or (iv) min{&h, Ch} > 2,
(€ + ¢)h < 4(1 + oh?). Moreover, it is an M-matrix when 0 < max{£h,h} < 2. Therefore, By
Theorem 2.1, we know that both Methods 3.1 and 3.2 are convergent under the above conditions
if the relaxation factor satisfies w € (0, 2).

In actual computations, the right-hand side b € R" is generated as b = Ae, in which

e = (1,1,---,1)T € R™, the initial vector z° € R™ is taken to be zero, and all runs are
terminated if the current iterations satisfy either
RES = ||rP[|2 < el[r°]]2, (20)

or if the numbers of iteration steps are over 10,000. The iteration index p satisfying (20) is
particularly denoted as “IT”. Moreover, the Newton iteration for getting the relaxation factor
w in Step 4 of either Method 3.1 or Method 3.2 is exitted once the absolute value of the function
in (12) or (15) is less than 0.01, respectively.
Example 4.1. (¢ =( =0 =0.0.

In accordance with Theorem 2.2, the optimal relaxation factor of the classical SOR method
is
(1) _ 2
Pt T 1 4 sin(7h)

We solve this system of linear equations by Method 3.1, the Gauss-Seidel method (GS) and the

SOR method of the optimal relaxation factor wgi)t (SOR(wg;)t)), with respect to different mesh
spacing h.

W
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Table 4.1. Iteration numbers and residual errors for Example 4.1. (¢ = h%/5)

hT 32 64 128 256 288 300
SOR(w(1)) IT 64 129 259 - - -
RES | 1.80B-04 | 9.12E-05 | 5.54E-05 | 8.79E-05 | 1.04E-04 | 1.11E-04
GS IT 561 2391 - - - -
RES | 5.60B-04 | 1.96B-04 | 7.57B-05 | 3.46E-03 | 4.22E-03 | 4.45E-03
AOSOR IT 51 111 264 2321 4395 6079
B/y=1.0/1.0 [ RES | 523604 | 1.93E-04 | 6.86E-05 | 2.44E-05 | 2.04E-05 | 1.92E-05
IT 43 111 236 1968 3918 4501
AOSOR | RES | 5.21E-04 | 1.84E-04 | 6.84E-05 | 2.44E-05 | 2.045E-05 | 1.92B-05
B/y | 1.0/0.7 | 1.0/[1.2,1.6] | 1.o/i.7 | 1.0/1.7 | 1.0/1.7 | 1.0/1.7

From Table 4.1 we observe that the AOSOR method outperforms both the optimal SOR
method and the Gauss-Seidel method, within wider ranges of the parameters 4 and y. Moreover,
the numerical behaviour of the AOSOR method is less sensitive with respect to the parameters
0§ and <, and suitable choices of these two parameters can greatly improve the convergence

speed of the AOSOR method.
Example 4.2. (¢ =(=0.0 and 0 = 2.5.
In accordance with Theorem 2.2, the optimal relaxation factor of the classical SOR method

is

w

(2) _

2

opt —

1+

1— cos?(mh)
(1+0h?)2

We solve this system of linear equations by Method 3.1, the Gauss-Seidel method (GS) and

the SOR method of the optimal relaxation factor w

(2)

opt

opt

(SOR(w(Z))), with respect to different

mesh spacing h. The numerical results listed in Table 4.2 further confirm the observations in

Example 4.1.

Table 4.2. Tteration numbers and residual errors for Example 4.2. (¢ = h?/5)

BT 32 64 128 256 288 300
SOR(w)) IT 61 128 256 - - -
RES | 5.39E-04 | 5.67E-05 | 6.72E-05 | 7.95E-05 | 6.09E-05 | 6.42E-05
GS IT 401 1700 7188 - - -
RES | 5.62E-04 | 1.976-04 | 6.93E-05 | 2.43E-03 | 3.48E-03 | 3.84E-03
AOSOR IT 45 100 223 1403 2744 3882
B/y=1.0/1.0 [ RES | 4.88E-04 | 1.94E-04 | 6.77B-05 | 2.43B-05 | 2.04E-05 | 1.92E-05
T 45 100 214 1083 2165 2646
AOSOR | RES | 4.87E-04 | 1.95E-04 | 6.79E-05 | 2.44E-05 | 2.04E-05 | 1.92E-05
3 | [0.2,1.4] | [0.6,1.5] | [0.8,1.6 0.8 0.8 0.8
v | [0.7,0.4] | [0.8,1.5] | [1.4,15 15 15 15

Example 4.3. ¢ =30.0, ( =0.0 and ¢ = 10.0.

In this case, the matrix A € R"*" is unsymmetric and we do not have an analytical formula

for the optimal relaxation factor, as in Examples 4.1 and 4.2. However, noticing that py
m + 10h and puo = 12, we can use w

(2)

opt

optimal relaxation factor of this example, in particular, when h is quite small.
We solve this system of linear equations by Method 3.2, the Gauss-Seidel method (GS)

and the SOR method of the relaxation factor w

(2)

opt

(2)

opt

(SOR(w

in Example 4.2 as a good approximation to the exact

)), with respect to different mesh

spacing h. The numerical results listed in Table 4.3 yield similar observations to those in

Example 4.1.
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Table 4.3. Iteration numbers and residual errors for Example 4.3. (¢ = h?)

ht 32 64 128 256 288 300
SOR(w) IT 52 105 - - - -

RES | 2.68E-03 | 8.84E-04 | 5.17TE-04 | 1.61E-03 | 2.18E-03 | 2.86E-03

GS IT 7 351 1517 6387 8142 8859
RES | 2.93E-03 | 9.99E-04 | 3.46E-04 | 1.22E-04 | 1.02E-04 | 9.64E-05

AOSOR IT 42 104 236 2483 3488 4262
B/y=1.0/1.0 | RES | 2.90E-03 | 9.54E-04 | 3.28E-04 | 1.22E-04 | 1.02E-04 | 9.64E-05

IT 20 51 179 2296 3091 3041
AOSOR RES | 2.77E-03 | 9.96E-04 | 3.44E-04 | 1.22E-04 | 1.02E-04 | 9.64E-05

8 [0.8,1.1] 1.1 1.1 1.1 1.1 1.1

¥ 1.5 1.6 1.4 1.3 1.3 1.3

Example 4.4. ¢ =0.0, ( =30.0 and o = 10.0.

In this case, the matrix A € R"*" is also unsymmetric and we do not have an analytical
formula for the optimal relaxation factor. However, noticing that gy = n; and ps = 12 + 10h,
we can use wgi)t in Example 4.2 as a good approximation to the exact optimal relaxation factor
of this example, in particular, when h is quite small.

We solve this system of linear equations by Method 3.2, the Gauss-Seidel method (GS)

and the SOR method of the relaxation factor wgi)t (SOR(wgi)t)), with respect to different mesh
spacing h. The numerical results listed in Table 4.4 yield similar conclusions to those in Example

4.1.

Table 4.4. Iteration numbers and residual errors for Example 4.4. (¢ = h?)

Rt 32 64 128 256 288 300
SOR(w)) IT 52 105 - - - -
RES | 2.68E-03 | 8.71E-04 | 5.82E-04 | 1.74E-03 | 2.08E-03 | 3.01E-03
GS IT 77 351 1517 6388 8143 8860
RES | 2.93E-03 | 9.09E-04 | 3.46E-04 | 1.22E-04 | 1.02E-04 | 9.64E-05
AOSOR IT 43 104 408 1987 2872 3213
(3=~=1.0) [ RES | 3.00E-03 | 8.95E-04 | 3.37E-04 | 1.22E-04 | 1.02E-04 | 9.64E-05
IT 20 51 200 2369 3203 3218
AOSOR RES | 2.77E-03 | 9.81E-04 | 3.21E-04 | 1.22E-04 | 1.02E-04 | 9.63E-05
3 [0.8,1.1] 11 11 1.1 1.0 1.1
v 15 1.6 1.4 15 1.2 1.2
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