- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties, are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/10234.html} }Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties, are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.