- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 1150-1174.
Published online: 2017-10
Cited by
- BibTex
- RIS
- TXT
In this work, we introduce an IMEX discontinuous Galerkin solver for the weakly compressible isentropic Euler equations. The splitting needed for the IMEX temporal integration is based on the recently introduced reference solution splitting [32, 52], which makes use of the incompressible solution. We show that the overall method is asymptotic preserving. Numerical results show the performance of the algorithm which is stable under a convective CFL condition and does not show any order degradation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0028}, url = {http://global-sci.org/intro/article_detail/cicp/9997.html} }In this work, we introduce an IMEX discontinuous Galerkin solver for the weakly compressible isentropic Euler equations. The splitting needed for the IMEX temporal integration is based on the recently introduced reference solution splitting [32, 52], which makes use of the incompressible solution. We show that the overall method is asymptotic preserving. Numerical results show the performance of the algorithm which is stable under a convective CFL condition and does not show any order degradation.