- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this work, the modified Ghost Fluid Method is further developed to apply to compressible fluid coupled to deformable structure, where the pressure in the structure or flow can vary from an initial extremely high magnitude (such that the solid medium can be under plastic compression) to a subsequently very low quantity (so that cavitation can occur in the fluid). New techniques are also developed in the definition of the ghost fluid status when the structure is under plastic deformation or when the flow is under cavitation next to the structure. Numerical results show that the improved MGFM for treatment of the fluid-deformable structure coupling works efficiently for all pressure ranges and is capable of simulating cavitation evolution and cavitation reloading in conjunction with the employment of the isentropic one-fluid cavitation model.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7986.html} }In this work, the modified Ghost Fluid Method is further developed to apply to compressible fluid coupled to deformable structure, where the pressure in the structure or flow can vary from an initial extremely high magnitude (such that the solid medium can be under plastic compression) to a subsequently very low quantity (so that cavitation can occur in the fluid). New techniques are also developed in the definition of the ghost fluid status when the structure is under plastic deformation or when the flow is under cavitation next to the structure. Numerical results show that the improved MGFM for treatment of the fluid-deformable structure coupling works efficiently for all pressure ranges and is capable of simulating cavitation evolution and cavitation reloading in conjunction with the employment of the isentropic one-fluid cavitation model.