- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Social networks play an important role in determining the dynamics and outcome of language change. Early empirical studies only examine small-scale local social networks, and focus on the relationship between the individual speakers' linguistic behaviors and their characteristics in the network. In contrast, computer models can provide an efficient tool to consider large-scale networks with different structures and discuss the long-term effect of individuals' learning and interaction on language change. This paper presents an agent-based computer model which simulates language change as a process of innovation diffusion, to address the threshold problem of language change. In the model, the population is implemented as a network of agents with age differences and different learning abilities, and the population is changing, with new agents born periodically to replace old ones. Four typical types of networks and their effect on the diffusion dynamics are examined. When the functional bias is sufficiently high, innovations always diffuse to the whole population in a linear manner in regular and small-world networks, but diffuse quickly in a sharp S-curve in random and scale-free networks. The success rate of diffusion is higher in regular and small-world networks than in random and scale-free networks. In addition, the model shows that as long as the population contains a small number of statistical learners who can learn and use both linguistic variants statistically according to the impact of these variants in the input, there is a very high probability for linguistic innovations with only small functional advantage to overcome the threshold of diffusion.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7882.html} }Social networks play an important role in determining the dynamics and outcome of language change. Early empirical studies only examine small-scale local social networks, and focus on the relationship between the individual speakers' linguistic behaviors and their characteristics in the network. In contrast, computer models can provide an efficient tool to consider large-scale networks with different structures and discuss the long-term effect of individuals' learning and interaction on language change. This paper presents an agent-based computer model which simulates language change as a process of innovation diffusion, to address the threshold problem of language change. In the model, the population is implemented as a network of agents with age differences and different learning abilities, and the population is changing, with new agents born periodically to replace old ones. Four typical types of networks and their effect on the diffusion dynamics are examined. When the functional bias is sufficiently high, innovations always diffuse to the whole population in a linear manner in regular and small-world networks, but diffuse quickly in a sharp S-curve in random and scale-free networks. The success rate of diffusion is higher in regular and small-world networks than in random and scale-free networks. In addition, the model shows that as long as the population contains a small number of statistical learners who can learn and use both linguistic variants statistically according to the impact of these variants in the input, there is a very high probability for linguistic innovations with only small functional advantage to overcome the threshold of diffusion.