- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamic equations with variable source terms based on equivalent equilibrium functions. A special parametrization of the free relaxation parameter is derived. It controls, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopic steady solution and governs the spatial discretization of transient flows. In this framework, the multi-reflection approach [16, 18] is generalized and extended for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions. We propose second- and third-order accurate boundary schemes and adapt them for corners. The boundary schemes are analyzed for exactness of the parametrization, uniqueness of their steady solutions, support of staggered invariants and for the effective accuracy in case of time dependent boundary conditions and transient flow. When the boundary scheme obeys the parametrization properly, the derived permeability values become independent of the selected viscosity for any porous structure and can be computed efficiently. The linear interpolations [5, 46] are improved with respect to this property.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7862.html} }We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamic equations with variable source terms based on equivalent equilibrium functions. A special parametrization of the free relaxation parameter is derived. It controls, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopic steady solution and governs the spatial discretization of transient flows. In this framework, the multi-reflection approach [16, 18] is generalized and extended for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions. We propose second- and third-order accurate boundary schemes and adapt them for corners. The boundary schemes are analyzed for exactness of the parametrization, uniqueness of their steady solutions, support of staggered invariants and for the effective accuracy in case of time dependent boundary conditions and transient flow. When the boundary scheme obeys the parametrization properly, the derived permeability values become independent of the selected viscosity for any porous structure and can be computed efficiently. The linear interpolations [5, 46] are improved with respect to this property.