arrow
Volume 3, Issue 2
Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions

Irina Ginzburg, Frederik Verhaeghe & Dominique d'Humières

Commun. Comput. Phys., 3 (2008), pp. 427-478.

Published online: 2008-03

Export citation
  • Abstract

We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamic equations with variable source terms based on equivalent equilibrium functions. A special parametrization of the free relaxation parameter is derived. It controls, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopic steady solution and governs the spatial discretization of transient flows. In this framework, the multi-reflection approach [16, 18] is generalized and extended for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions. We propose second- and third-order accurate boundary schemes and adapt them for corners. The boundary schemes are analyzed for exactness of the parametrization, uniqueness of their steady solutions, support of staggered invariants and for the effective accuracy in case of time dependent boundary conditions and transient flow. When the boundary scheme obeys the parametrization properly, the derived permeability values become independent of the selected viscosity for any porous structure and can be computed efficiently. The linear interpolations [5, 46] are improved with respect to this property.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-3-427, author = {Irina Ginzburg, Frederik Verhaeghe and Dominique d'Humières}, title = {Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions}, journal = {Communications in Computational Physics}, year = {2008}, volume = {3}, number = {2}, pages = {427--478}, abstract = {

We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamic equations with variable source terms based on equivalent equilibrium functions. A special parametrization of the free relaxation parameter is derived. It controls, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopic steady solution and governs the spatial discretization of transient flows. In this framework, the multi-reflection approach [16, 18] is generalized and extended for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions. We propose second- and third-order accurate boundary schemes and adapt them for corners. The boundary schemes are analyzed for exactness of the parametrization, uniqueness of their steady solutions, support of staggered invariants and for the effective accuracy in case of time dependent boundary conditions and transient flow. When the boundary scheme obeys the parametrization properly, the derived permeability values become independent of the selected viscosity for any porous structure and can be computed efficiently. The linear interpolations [5, 46] are improved with respect to this property.

}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7862.html} }
TY - JOUR T1 - Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions AU - Irina Ginzburg, Frederik Verhaeghe & Dominique d'Humières JO - Communications in Computational Physics VL - 2 SP - 427 EP - 478 PY - 2008 DA - 2008/03 SN - 3 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cicp/7862.html KW - AB -

We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hydrodynamic equations with variable source terms based on equivalent equilibrium functions. A special parametrization of the free relaxation parameter is derived. It controls, in addition to the non-dimensional hydrodynamic numbers, any TRT macroscopic steady solution and governs the spatial discretization of transient flows. In this framework, the multi-reflection approach [16, 18] is generalized and extended for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary conditions. We propose second- and third-order accurate boundary schemes and adapt them for corners. The boundary schemes are analyzed for exactness of the parametrization, uniqueness of their steady solutions, support of staggered invariants and for the effective accuracy in case of time dependent boundary conditions and transient flow. When the boundary scheme obeys the parametrization properly, the derived permeability values become independent of the selected viscosity for any porous structure and can be computed efficiently. The linear interpolations [5, 46] are improved with respect to this property.

Irina Ginzburg, Frederik Verhaeghe and Dominique d'Humières. (2008). Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions. Communications in Computational Physics. 3 (2). 427-478. doi:
Copy to clipboard
The citation has been copied to your clipboard