- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
There have been several recent papers on developing moving mesh methods for solving phase-field equations. However, it is observed that some of these moving mesh solutions are essentially different from the solutions on very fine fixed meshes. One of the purposes of this paper is to understand the reason for the differences. We carried out numerical sensitivity studies systematically in this paper and it can be concluded that for the phase-field equations, the numerical solutions are very sensitive to the starting mesh and the monitor function. As a separate issue, an efficient alternating Crank-Nicolson time discretization scheme is developed for solving the nonlinear system resulting from a finite element approximation to the phase-field equations.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7858.html} }There have been several recent papers on developing moving mesh methods for solving phase-field equations. However, it is observed that some of these moving mesh solutions are essentially different from the solutions on very fine fixed meshes. One of the purposes of this paper is to understand the reason for the differences. We carried out numerical sensitivity studies systematically in this paper and it can be concluded that for the phase-field equations, the numerical solutions are very sensitive to the starting mesh and the monitor function. As a separate issue, an efficient alternating Crank-Nicolson time discretization scheme is developed for solving the nonlinear system resulting from a finite element approximation to the phase-field equations.