- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We review the methods of simulating elastic wave propagation in a borehole. We considered two different approaches: a quasi-analytic approach using the Discrete Wavenumber Summation Method, and the purely numerical Finite Difference Method. We consider the special geometry of the borehole and discuss the problem in cylindrical coordinates. We point out some numerical difficulties that are particularly unique to this problem in cylindrical coordinates.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7841.html} }We review the methods of simulating elastic wave propagation in a borehole. We considered two different approaches: a quasi-analytic approach using the Discrete Wavenumber Summation Method, and the purely numerical Finite Difference Method. We consider the special geometry of the borehole and discuss the problem in cylindrical coordinates. We point out some numerical difficulties that are particularly unique to this problem in cylindrical coordinates.