- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 3 (2008), pp. 1-32.
Published online: 2008-03
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We provide an introduction to the use of the spectral-element method (SEM) in seismology. Following a brief review of the basic equations that govern seismic wave propagation, we discuss in some detail how these equations may be solved numerically based upon the SEM to address the forward problem in seismology. Examples of synthetic seismograms calculated based upon the SEM are compared to data recorded by the Global Seismographic Network. Finally, we discuss the challenge of using the remaining differences between the data and the synthetic seismograms to constrain better Earth models and source descriptions. This leads naturally to adjoint methods, which provide a practical approach to this formidable computational challenge and enables seismologists to tackle the inverse problem.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7840.html} }We provide an introduction to the use of the spectral-element method (SEM) in seismology. Following a brief review of the basic equations that govern seismic wave propagation, we discuss in some detail how these equations may be solved numerically based upon the SEM to address the forward problem in seismology. Examples of synthetic seismograms calculated based upon the SEM are compared to data recorded by the Global Seismographic Network. Finally, we discuss the challenge of using the remaining differences between the data and the synthetic seismograms to constrain better Earth models and source descriptions. This leads naturally to adjoint methods, which provide a practical approach to this formidable computational challenge and enables seismologists to tackle the inverse problem.