- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Based on the high order essentially non-oscillatory (ENO) Lagrangian type scheme on quadrilateral meshes presented in our earlier work [3], in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics. The main purpose of this work is to demonstrate our claim in [3] that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges, which restricts the accuracy of the resulting scheme to at most second order. The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes. Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7824.html} }Based on the high order essentially non-oscillatory (ENO) Lagrangian type scheme on quadrilateral meshes presented in our earlier work [3], in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics. The main purpose of this work is to demonstrate our claim in [3] that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges, which restricts the accuracy of the resulting scheme to at most second order. The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes. Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.