- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper, we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain. We propose a new kind of splitting finite-difference time-domain schemes on a staggered grid, which consists of only two stages for each time step. It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions. Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7796.html} }In this paper, we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain. We propose a new kind of splitting finite-difference time-domain schemes on a staggered grid, which consists of only two stages for each time step. It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions. Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes.