- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper we develop an efficient meshless method for solving inhomogeneous elliptic partial differential equations. We first approximate the source function by Chebyshev polynomials. We then focus on how to find a polynomial particular solution when the source function is a polynomial. Through the principle of the method of undetermined coefficients and a proper arrangement of the terms for the polynomial particular solution to be determined, the coefficients of the particular solution satisfy a triangular system of linear algebraic equations. Explicit recursive formulas for the coefficients of the particular solutions are derived for different types of elliptic PDEs. The method is further incorporated into the method of fundamental solutions for solving inhomogeneous elliptic PDEs. Numerical results show that our approach is efficient and accurate.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7772.html} }In this paper we develop an efficient meshless method for solving inhomogeneous elliptic partial differential equations. We first approximate the source function by Chebyshev polynomials. We then focus on how to find a polynomial particular solution when the source function is a polynomial. Through the principle of the method of undetermined coefficients and a proper arrangement of the terms for the polynomial particular solution to be determined, the coefficients of the particular solution satisfy a triangular system of linear algebraic equations. Explicit recursive formulas for the coefficients of the particular solutions are derived for different types of elliptic PDEs. The method is further incorporated into the method of fundamental solutions for solving inhomogeneous elliptic PDEs. Numerical results show that our approach is efficient and accurate.