- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
The present paper introduces bilinear forms that are equivalent to the recovery-based discontinuous Galerkin formulation introduced by Van Leer in 2005. The recovery method approximates the solution of the diffusion equation in a discontinuous function space, while inter-element coupling is achieved by a local L2 projection that recovers a smooth continuous function underlying the discontinuous approximation. Here we introduce the concept of a local “recovery polynomial basis” – smooth polynomials that are in the weak sense indistinguishable from the discontinuous basis polynomials – and show it allows us to eliminate the recovery procedure. The recovery method reproduces the symmetric discontinuous Galerkin formulation with additional penalty-like terms depending on the targeted accuracy of the method. We present the unique link between the recovery method and discontinuous Galerkin bilinear forms.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7757.html} }The present paper introduces bilinear forms that are equivalent to the recovery-based discontinuous Galerkin formulation introduced by Van Leer in 2005. The recovery method approximates the solution of the diffusion equation in a discontinuous function space, while inter-element coupling is achieved by a local L2 projection that recovers a smooth continuous function underlying the discontinuous approximation. Here we introduce the concept of a local “recovery polynomial basis” – smooth polynomials that are in the weak sense indistinguishable from the discontinuous basis polynomials – and show it allows us to eliminate the recovery procedure. The recovery method reproduces the symmetric discontinuous Galerkin formulation with additional penalty-like terms depending on the targeted accuracy of the method. We present the unique link between the recovery method and discontinuous Galerkin bilinear forms.