- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
A stable and explicit second order accurate finite difference method for the elastic wave equation in curvilinear coordinates is presented. The discretization of the spatial operators in the method is shown to be self-adjoint for free-surface, Dirichlet and periodic boundary conditions. The fully discrete version of the method conserves a discrete energy to machine precision.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7725.html} }A stable and explicit second order accurate finite difference method for the elastic wave equation in curvilinear coordinates is presented. The discretization of the spatial operators in the method is shown to be self-adjoint for free-surface, Dirichlet and periodic boundary conditions. The fully discrete version of the method conserves a discrete energy to machine precision.