- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 1139-1182.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we introduce a moment closure which is intended to provide a macroscopic approximation of the evolution of a particle distribution function, solution of a kinetic equation. This closure is of non-local type in the sense that it involves convolution or pseudo-differential operators. We show it is consistent with the diffusion limit and we propose numerical approximations to treat the non-local terms. We illustrate how this approach can be incorporated in complex models involving a coupling with hydrodynamic equations, by treating examples arising in radiative transfer. We pay a specific attention to the conservation of the total energy by the numerical scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.211009.100310a}, url = {http://global-sci.org/intro/article_detail/cicp/7611.html} }In this paper, we introduce a moment closure which is intended to provide a macroscopic approximation of the evolution of a particle distribution function, solution of a kinetic equation. This closure is of non-local type in the sense that it involves convolution or pseudo-differential operators. We show it is consistent with the diffusion limit and we propose numerical approximations to treat the non-local terms. We illustrate how this approach can be incorporated in complex models involving a coupling with hydrodynamic equations, by treating examples arising in radiative transfer. We pay a specific attention to the conservation of the total energy by the numerical scheme.