- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 976-994.
Published online: 2010-08
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we introduce a novel hybrid variational model which generalizes the classical total variation method and the wavelet shrinkage method. An alternating minimization direction algorithm is then employed. We also prove that it converges strongly to the minimizer of the proposed hybrid model. Finally, some numerical examples illustrate clearly that the new model outperforms the standard total variation method and wavelet shrinkage method as it recovers better image details and avoids the Gibbs oscillations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.210709.180310a}, url = {http://global-sci.org/intro/article_detail/cicp/7605.html} }In this paper, we introduce a novel hybrid variational model which generalizes the classical total variation method and the wavelet shrinkage method. An alternating minimization direction algorithm is then employed. We also prove that it converges strongly to the minimizer of the proposed hybrid model. Finally, some numerical examples illustrate clearly that the new model outperforms the standard total variation method and wavelet shrinkage method as it recovers better image details and avoids the Gibbs oscillations.