- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 1414-1430.
Published online: 2011-05
Cited by
- BibTex
- RIS
- TXT
Free energy lattice Boltzmann methods are well suited for the simulation of two phase flow problems. The model for the interface is based on well understood physical grounds. In most cases a numerical interface is used instead of the physical one because of lattice resolution limitations. In this paper we present a framework where we can both follow the droplet behavior in a coarse scale and solve the interface in a fine scale simultaneously. We apply the method for the simulation of a droplet using an interface to diameter size ratio of 1 to 280. In a second simulation, a small droplet coalesces with a 42 times larger droplet producing on it only a small capillary wave that propagates and dissipates.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.031109.100111s}, url = {http://global-sci.org/intro/article_detail/cicp/7560.html} }Free energy lattice Boltzmann methods are well suited for the simulation of two phase flow problems. The model for the interface is based on well understood physical grounds. In most cases a numerical interface is used instead of the physical one because of lattice resolution limitations. In this paper we present a framework where we can both follow the droplet behavior in a coarse scale and solve the interface in a fine scale simultaneously. We apply the method for the simulation of a droplet using an interface to diameter size ratio of 1 to 280. In a second simulation, a small droplet coalesces with a 42 times larger droplet producing on it only a small capillary wave that propagates and dissipates.